|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class Histogram_Matching(nn.Module):
|
|
def __init__(self, differentiable=False):
|
|
super(Histogram_Matching, self).__init__()
|
|
self.differentiable = differentiable
|
|
|
|
def forward(self, dst, ref):
|
|
|
|
B, C, H, W = dst.size()
|
|
|
|
assert dst.device == ref.device
|
|
|
|
hist_dst = self.cal_hist(dst)
|
|
hist_ref = self.cal_hist(ref)
|
|
|
|
tables = self.cal_trans_batch(hist_dst, hist_ref)
|
|
|
|
rst = dst.clone()
|
|
for b in range(B):
|
|
for c in range(C):
|
|
rst[b,c] = tables[b*c, (dst[b,c] * 255).long()]
|
|
|
|
rst /= 255.
|
|
return rst
|
|
|
|
def cal_hist(self, img):
|
|
B, C, H, W = img.size()
|
|
|
|
if self.differentiable:
|
|
hists = self.soft_histc_batch(img * 255, bins=256, min=0, max=256, sigma=3*25)
|
|
else:
|
|
hists = torch.stack([torch.histc(img[b,c] * 255, bins=256, min=0, max=255) for b in range(B) for c in range(C)])
|
|
hists = hists.float()
|
|
hists = F.normalize(hists, p=1)
|
|
|
|
bc, n = hists.size()
|
|
|
|
triu = torch.ones(bc, n, n, device=hists.device).triu()
|
|
|
|
hists = torch.bmm(hists[:,None,:], triu)[:,0,:]
|
|
return hists
|
|
|
|
def soft_histc_batch(self, x, bins=256, min=0, max=256, sigma=3*25):
|
|
|
|
B, C, H, W = x.size()
|
|
|
|
x = x.view(B*C, -1)
|
|
|
|
delta = float(max - min) / float(bins)
|
|
|
|
centers = float(min) + delta * (torch.arange(bins, device=x.device, dtype=torch.bfloat16) + 0.5)
|
|
|
|
x = torch.unsqueeze(x, 1)
|
|
|
|
centers = centers[None,:,None]
|
|
|
|
x = x - centers
|
|
|
|
x = x.type(torch.bfloat16)
|
|
|
|
x = torch.sigmoid(sigma * (x + delta/2)) - torch.sigmoid(sigma * (x - delta/2))
|
|
|
|
x = x.sum(dim=2)
|
|
|
|
x = x.type(torch.float32)
|
|
|
|
|
|
return x
|
|
|
|
def cal_trans_batch(self, hist_dst, hist_ref):
|
|
|
|
hist_dst = hist_dst[:,None,:].repeat(1,256,1)
|
|
|
|
hist_ref = hist_ref[:,:,None].repeat(1,1,256)
|
|
|
|
table = hist_dst - hist_ref
|
|
|
|
table = torch.where(table>=0, 1., 0.)
|
|
|
|
table = torch.sum(table, dim=1) - 1
|
|
|
|
table = torch.clamp(table, min=0, max=255)
|
|
return table
|
|
|