File size: 6,218 Bytes
1d1e331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import streamlit as st
import pandas as pd
import openai
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from dotenv import load_dotenv
import anthropic
import ast
import re

# Load environment variables
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")

# UI Styling
st.markdown(
    """
    <style>
    .stButton button {
        background-color: #1F6FEB;
        color: white;
        border-radius: 8px;
        border: none;
        padding: 10px 20px;
        font-weight: bold;
    }
    .stButton button:hover {
        background-color: #1A4FC5;
    }
    .stTextInput > div > input {
        border: 1px solid #30363D;
        background-color: #161B22;
        color: #C9D1D9;
        border-radius: 6px;
        padding: 10px;
    }
    .stFileUploader > div {
        border: 2px dashed #30363D;
        background-color: #161B22;
        color: #C9D1D9;
        border-radius: 6px;
        padding: 10px;
    }
    .response-box {
        background-color: #161B22;
        padding: 10px;
        border-radius: 6px;
        margin-bottom: 10px;
        color: #FFFFFF;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Excel Q&A Chatbot πŸ“Š")

# Model Selection
model_choice = st.selectbox("Select LLM Model", ["OpenAI GPT-3.5", "Claude 3 Haiku", "Mistral-7B"])

# Load appropriate model based on selection
if model_choice == "Mistral-7B":
    model_name = "mistralai/Mistral-7B-Instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
    def ask_mistral(query):
        inputs = tokenizer(query, return_tensors="pt").to("cuda")
        output = model.generate(**inputs)
        return tokenizer.decode(output[0])

elif model_choice == "Claude 3 Haiku":
    client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
    def ask_claude(query):
        response = client.messages.create(
            model="claude-3-haiku",
            max_tokens=512,
            messages=[{"role": "user", "content": query}]
        )
        return response.content[0]["text"]

else:
    client = openai.OpenAI()
    def ask_gpt(query):
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": query}]
        )
        return response.choices[0].message.content

# File Upload with validation
uploaded_file = st.file_uploader("Upload a file", type=["csv", "xlsx", "xls", "json", "tsv"])

if uploaded_file is not None:
    file_extension = uploaded_file.name.split(".")[-1].lower()
    
    try:
        if file_extension == "csv":
            df = pd.read_csv(uploaded_file)
        elif file_extension in ["xlsx", "xls"]:
            df = pd.read_excel(uploaded_file, engine="openpyxl")
        elif file_extension == "json":
            df = pd.read_json(uploaded_file)
        elif file_extension == "tsv":
            df = pd.read_csv(uploaded_file, sep="\t")
        else:
            st.error("Unsupported file format. Please upload a CSV, Excel, JSON, or TSV file.")
            st.stop()
        
        st.write("### Preview of Data:")
        st.write(df.head())
        
        # Extract metadata
        column_names = df.columns.tolist()
        data_types = df.dtypes.apply(lambda x: x.name).to_dict()
        missing_values = df.isnull().sum().to_dict()
        
        # Display metadata
        st.write("### Column Details:")
        st.write(pd.DataFrame({"Column": column_names, "Type": data_types.values(), "Missing Values": missing_values.values()}))
        
    except Exception as e:
        st.error(f"Error loading file: {str(e)}")
        st.stop()
    
    # User Query
    query = st.text_input("Ask a question about this data:")
    
    if st.button("Submit Query"):
        if query:
            # Interpret the query using selected LLM
            if model_choice == "Mistral-7B":
                parsed_query = ask_mistral(f"Convert this question into a structured data operation: {query}")
            elif model_choice == "Claude 3 Haiku":
                parsed_query = ask_claude(f"Convert this question into a structured data operation: {query}")
            else:
                parsed_query = ask_gpt(f"Convert this question into a structured data operation: {query}")
            
            # Validate and clean query
            parsed_query = re.sub(r"[^a-zA-Z0-9_()\[\]"'., ]", "", parsed_query.strip())
            st.write(f"Parsed Query: `{parsed_query}`")
            
            # Predefined Safe Execution Methods
            SAFE_OPERATIONS = {
                "sum": lambda col: df[col].sum(),
                "mean": lambda col: df[col].mean(),
                "max": lambda col: df[col].max(),
                "groupby_sum": lambda col, group_by: df.groupby(group_by)[col].sum()
            }
            
            # Safe Execution
            try:
                exec_result = eval(parsed_query, {"df": df, "pd": pd, "SAFE_OPERATIONS": SAFE_OPERATIONS})
                st.write("### Result:")
                st.write(exec_result if isinstance(exec_result, pd.DataFrame) else str(exec_result))
                
                # If numerical data, show a visualization dynamically
                if isinstance(exec_result, pd.Series):
                    fig, ax = plt.subplots()
                    if exec_result.dtype in ["int64", "float64"]:
                        exec_result.plot(kind="bar", ax=ax)
                    elif exec_result.dtype == "object":
                        exec_result.value_counts().plot(kind="bar", ax=ax)
                    st.pyplot(fig)
                
            except SyntaxError as e:
                st.error(f"Syntax Error in parsed query: {str(e)}")
            except Exception as e:
                st.error(f"Error executing query: {str(e)}")
    
    # Memory for context retention
    if "query_history" not in st.session_state:
        st.session_state.query_history = []
    st.session_state.query_history.append(query)