garyuzair's picture
Update app.py
527388f verified
import gradio as gr
import google.generativeai as genai
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import requests
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from moviepy.editor import (ImageClip, AudioFileClip, concatenate_audioclips,
concatenate_videoclips, CompositeVideoClip, TextClip,
VideoFileClip, vfx) # Added VideoFileClip and vfx
from googleapiclient.discovery import build
import yt_dlp
import os
import re
import time
import shutil
import random
from dotenv import load_dotenv
from urllib.parse import quote_plus
# --- CONFIGURATION ---
load_dotenv() # Load environment variables from .env file
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
if not GEMINI_API_KEY:
print("WARNING: GEMINI_API_KEY not found in .env file or environment.")
if not YOUTUBE_API_KEY:
print("WARNING: YOUTUBE_API_KEY not found in .env file or environment.")
TEMP_DIR = "temp_files_youtube_creator" # Unique temp dir name
SPEAKER_DESCRIPTION_FOR_TTS = "A clear, engaging, and expressive male voice with a standard American accent, speaking at a moderate pace. The recording is of high quality with minimal background noise."
IMAGES_PER_SEGMENT = 1
VIDEO_WIDTH = 1280 # Adjusted for faster processing, 1920x1080 is also good
VIDEO_HEIGHT = 720
VIDEO_FPS = 24
MAX_SCRIPT_SEGMENTS_FOR_DEMO = 5 # To keep processing time reasonable for Gradio
# --- END CONFIGURATION ---
# --- Initialize Models (Global for efficiency if Gradio doesn't reload everything) ---
gemini_model = None
parler_model = None
parler_tokenizer = None
parler_description_tokenizer = None
youtube_service = None
ua = UserAgent()
def initialize_models():
global gemini_model, parler_model, parler_tokenizer, parler_description_tokenizer, youtube_service
if GEMINI_API_KEY and gemini_model is None:
try:
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel("gemini-1.5-flash-latest") # Using latest flash
print("Gemini model initialized.")
except Exception as e:
print(f"Error initializing Gemini model: {e}")
gemini_model = None # Ensure it's None if init fails
if parler_model is None:
try:
print("Loading Parler-TTS models...")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1.1").to(device)
parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1.1")
parler_description_tokenizer = AutoTokenizer.from_pretrained(parler_model.config.text_encoder._name_or_path)
print("Parler-TTS models loaded.")
except Exception as e:
print(f"Error initializing Parler-TTS models: {e}")
parler_model = None
if YOUTUBE_API_KEY and youtube_service is None:
try:
youtube_service = build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)
print("YouTube service initialized.")
except Exception as e:
print(f"Error initializing YouTube service: {e}")
youtube_service = None
# Call initialization at the start
initialize_models()
# --- Prompts ---
def get_idea_generation_prompt_template(niche):
return f"""
Generate 5 diverse and highly engaging YouTube video ideas for the niche: '{niche}'.
For each idea, provide:
1. **Title:** A very catchy, short, and SEO-friendly Title (max 10 words).
2. **Description:** A compelling 1-2 sentence hook.
3. **Keywords:** 3-5 specific keywords for YouTube search.
Format each idea clearly, separated by '---'.
Example:
Title: Zen Masters' Morning Secrets
Description: Unlock ancient Zen rituals for a peaceful and productive morning. Transform your day before it even begins!
Keywords: zen, morning routine, mindfulness, productivity, meditation
---
"""
def get_viral_selection_prompt_template(ideas_text):
return f"""
Analyze the following YouTube video ideas. Select the ONE idea with the highest potential for virality and broad appeal within its niche.
Consider factors like curiosity gap, emotional impact, and shareability.
Provide ONLY the Title of the selected idea. No extra text.
Video Ideas:
{ideas_text}
Most Viral Title:
"""
def get_script_generation_prompt_template(title, description, target_duration_seconds=60): # Shorter for demo
return f"""
Create a captivating YouTube video script for:
Title: "{title}"
Description: "{description}"
The script should be for a video of approximately {target_duration_seconds} seconds.
Break it into distinct scenes/segments. For each scene:
1. **VOICEOVER:** (The text to be spoken)
2. **IMAGE_KEYWORDS:** [keyword1, keyword2, visual detail] (Suggest 2-3 descriptive keywords for Unsplash image search for this scene)
The voiceover should be conversational, engaging, and clear.
Include an intro, main points, and a concluding call to action (e.g., subscribe).
Each voiceover part should be a few sentences long, suitable for a single visual scene.
Example Scene:
VOICEOVER: Imagine a world where time slows down, and every moment is an opportunity for peace. [serene landscape, misty mountains, calm lake]
---
Script:
"""
# --- Gemini Handler ---
def query_gemini(prompt_text):
if not gemini_model:
return "Error: Gemini model not initialized. Check API Key."
try:
response = gemini_model.generate_content(prompt_text)
return response.text
except Exception as e:
return f"Error calling Gemini API: {e}"
def parse_generated_ideas(text):
ideas = []
# Improved regex to handle variations and ensure all parts are captured
idea_blocks = re.split(r'\n\s*---\s*\n', text.strip())
for block in idea_blocks:
if not block.strip():
continue
title_match = re.search(r"Title:\s*(.*)", block, re.IGNORECASE)
desc_match = re.search(r"Description:\s*(.*)", block, re.IGNORECASE)
keywords_match = re.search(r"Keywords:\s*(.*)", block, re.IGNORECASE)
if title_match and desc_match:
title = title_match.group(1).strip()
description = desc_match.group(1).strip()
keywords_raw = keywords_match.group(1).strip() if keywords_match else ""
keywords = [k.strip() for k in keywords_raw.split(',') if k.strip()]
ideas.append({"title": title, "description": description, "keywords": keywords})
return ideas
def parse_generated_script(text):
segments = []
# Regex to capture VOICEOVER and IMAGE_KEYWORDS blocks
pattern = re.compile(r"VOICEOVER:\s*(.*?)\s*IMAGE_KEYWORDS:\s*\[(.*?)\]", re.DOTALL | re.IGNORECASE)
matches = pattern.findall(text)
for vo, kw_str in matches:
keywords = [k.strip() for k in kw_str.split(',') if k.strip()]
segments.append({
"voiceover": vo.strip(),
"image_keywords": keywords if keywords else ["general background"] # Default
})
if not segments and "VOICEOVER:" in text: # Fallback if structure is slightly off
parts = text.split("---")
for part in parts:
vo_match = re.search(r"VOICEOVER:\s*(.*)", part, re.DOTALL | re.IGNORECASE)
kw_match = re.search(r"IMAGE_KEYWORDS:\s*\[(.*?)\]", part, re.DOTALL | re.IGNORECASE)
if vo_match:
vo = vo_match.group(1).strip()
kws = []
if kw_match:
kws = [k.strip() for k in kw_match.group(1).split(',') if k.strip()]
segments.append({"voiceover": vo, "image_keywords": kws if kws else ["general background"]})
return segments[:MAX_SCRIPT_SEGMENTS_FOR_DEMO] # Limit for demo
# --- TTS Handler ---
def text_to_speech(text_prompt, speaker_desc, output_filename="segment_audio.wav"):
if not parler_model:
return "Error: Parler-TTS model not initialized."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
try:
input_ids = parler_description_tokenizer(speaker_desc, return_tensors="pt").input_ids.to(device)
prompt_input_ids = parler_tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids, do_sample=True, temperature=0.7, repetition_penalty=1.1) # Added some generation params
audio_arr = generation.cpu().numpy().squeeze()
full_output_path = os.path.join(TEMP_DIR, "audio_segments", output_filename)
sf.write(full_output_path, audio_arr, parler_model.config.sampling_rate)
return full_output_path
except Exception as e:
print(f"Parler-TTS Error for '{text_prompt[:30]}...': {e}")
return None
# --- Image Scraper (Improved Unsplash Scraper) ---
def fetch_unsplash_images(keywords, num_images=1):
if not keywords:
keywords = ["video background"] # More generic default
query = "+".join(quote_plus(k) for k in keywords) # URL encode keywords
# Try more specific search, e.g., landscape or portrait based on video aspect ratio
# For now, general search
search_url = f"https://unsplash.com/s/photos/{query}"
image_urls = []
downloaded_image_paths = []
headers = {'User-Agent': ua.random, 'Accept-Language': 'en-US,en;q=0.5'}
try:
print(f"Searching Unsplash: {search_url}")
response = requests.get(search_url, headers=headers, timeout=15)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Unsplash structure is dynamic. This is a common pattern.
# Look for figure tags, then img tags within them with srcset
# Or links that contain '/photos/'
# Attempt 1: Figure tags with img having srcset (often high quality)
figures = soup.find_all('figure', itemprop="image")
for fig in figures:
img_tag = fig.find('img', srcset=True)
if img_tag:
# Get the highest resolution from srcset (often the last one)
# Example srcset: url1 300w, url2 600w, url3 1000w
srcset_parts = img_tag['srcset'].split(',')
best_url = srcset_parts[-1].strip().split(' ')[0]
if best_url not in image_urls:
image_urls.append(best_url)
if len(image_urls) >= num_images * 2: # Fetch a bit more to choose from
break
# Attempt 2: Links to photo pages (if first attempt fails or yields few)
if len(image_urls) < num_images:
links = soup.find_all('a', href=True)
for link in links:
href = link['href']
if href.startswith('/photos/') and 'plus.unsplash.com' not in href: # Avoid premium
photo_id = href.split('/')[-1].split('?')[0]
# Construct a potential direct image URL (might not always work)
# Unsplash often uses source.unsplash.com for direct links by ID
direct_img_url = f"https://source.unsplash.com/{photo_id}/{VIDEO_WIDTH}x{VIDEO_HEIGHT}"
if direct_img_url not in image_urls:
image_urls.append(direct_img_url)
if len(image_urls) >= num_images * 2:
break
# Attempt 3: Generic placeholder if all else fails
if not image_urls:
print("Using placeholder image as Unsplash scraping yielded no results.")
for i in range(num_images):
downloaded_image_paths.append(get_placeholder_images(keywords, 1)[0]) # Use the placeholder fn
return downloaded_image_paths
print(f"Found {len(image_urls)} potential image URLs for '{query}'. Downloading {num_images}...")
os.makedirs(os.path.join(TEMP_DIR, "images"), exist_ok=True)
selected_urls = random.sample(image_urls, min(num_images, len(image_urls)))
for i, img_url in enumerate(selected_urls):
try:
time.sleep(random.uniform(0.5, 1.5)) # Respectful delay
img_response = requests.get(img_url, headers=headers, timeout=10, stream=True)
img_response.raise_for_status()
# Sanitize filename from keywords
safe_keywords = "".join(c if c.isalnum() else "_" for c in "_".join(keywords))
filename = f"unsplash_{safe_keywords}_{i}.jpg"
filepath = os.path.join(TEMP_DIR, "images", filename)
with open(filepath, 'wb') as f:
for chunk in img_response.iter_content(chunk_size=8192):
f.write(chunk)
downloaded_image_paths.append(filepath)
print(f"Downloaded: {filepath}")
except Exception as e_img:
print(f"Failed to download image {img_url}: {e_img}")
except requests.exceptions.RequestException as e_req:
print(f"Request error scraping Unsplash for '{query}': {e_req}")
except Exception as e_gen:
print(f"General error scraping Unsplash: {e_gen}")
# If not enough images downloaded, fill with placeholders
while len(downloaded_image_paths) < num_images:
print("Not enough images from Unsplash, adding placeholder.")
placeholder = get_placeholder_images(["generic"], 1)
if placeholder:
downloaded_image_paths.append(placeholder[0])
else: # Absolute fallback
break
return downloaded_image_paths
# --- Music Handler ---
def find_and_download_music(keywords, output_dir=TEMP_DIR):
if not youtube_service:
return "Error: YouTube service not initialized. Check API Key.", None
search_query = " ".join(keywords) + " copyright free instrumental background music"
try:
search_response = youtube_service.search().list(
q=search_query,
part='id,snippet',
maxResults=5, # Get a few options
type='video',
videoLicense='creativeCommon'
).execute()
if not search_response.get('items'):
return "No Creative Commons music found on YouTube.", None
# Simple selection: pick the first one. Could add logic to pick based on duration, views etc.
video = search_response['items'][0]
video_id = video['id']['videoId']
video_title = video['snippet']['title']
status_msg = f"Found music: '{video_title}'. Downloading..."
print(status_msg)
audio_path = os.path.join(output_dir, "background_music.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': audio_path,
'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
'quiet': True, 'no_warnings': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([f"https://www.youtube.com/watch?v={video_id}"])
return f"{status_msg} Downloaded to {audio_path}", audio_path
except Exception as e:
return f"Error fetching/downloading music: {e}", None
# --- Video Processor ---
def create_video(image_paths, voiceover_audio_paths, script_segments, background_music_path=None):
video_clips_list = []
min_segment_duration = 2.0 # Minimum duration for a scene
if not image_paths or not voiceover_audio_paths or len(image_paths) != len(voiceover_audio_paths) or len(voiceover_audio_paths) != len(script_segments):
комплСктация print(f"Warning: Mismatch in number of images ({len(image_paths)}), voiceovers ({len(voiceover_audio_paths)}), or script segments ({len(script_segments)}). Adjusting.")
# This needs careful handling. For demo, we'll try to proceed with minimum available.
num_segments = min(len(image_paths), len(voiceover_audio_paths), len(script_segments))
if num_segments == 0:
return "Error: Not enough assets to create video segments.", None
image_paths = image_paths[:num_segments]
voiceover_audio_paths = voiceover_audio_paths[:num_segments]
script_segments = script_segments[:num_segments]
for i in range(len(voiceover_audio_paths)):
img_path = image_paths[i]
vo_path = voiceover_audio_paths[i]
script_text = script_segments[i]['voiceover']
try:
audio_clip = AudioFileClip(vo_path)
# Ensure segment duration is at least min_segment_duration
segment_dur = max(audio_clip.duration, min_segment_duration)
# Image with Ken Burns effect (simple zoom and pan)
img = (ImageClip(img_path)
.set_duration(segment_dur)
.resize(height=VIDEO_HEIGHT) # Resize to fit height
.set_fps(VIDEO_FPS))
# Make image slightly larger for Ken Burns
img_zoomed = img.resize(1.2) # Zoom by 20%
# Pan from left to right (or other variations)
# img_animated = img_zoomed.set_position(lambda t: (-(img_zoomed.w - VIDEO_WIDTH) * (t / segment_dur), 'center'))
# Simpler: Crop to create a slight zoom/pan effect
img_animated = img_zoomed.fx(vfx.crop, width=VIDEO_WIDTH, height=VIDEO_HEIGHT, x_center=img_zoomed.w/2, y_center=img_zoomed.h/2)
# Subtitle styling (more polished)
txt = (TextClip(script_text, fontsize=30, color='yellow', font='Arial-Unicode-MS', # Try a font known for good char support
bg_color='rgba(0,0,0,0.5)', size=(VIDEO_WIDTH*0.9, None),
method='caption', align='South')
.set_duration(audio_clip.duration) # Sync with actual voiceover length
.set_start(0) # Start text when audio starts
.set_position(('center', 'bottom')))
video_segment = CompositeVideoClip([img_animated, txt], size=(VIDEO_WIDTH, VIDEO_HEIGHT)).set_audio(audio_clip)
video_clips_list.append(video_segment)
except Exception as e:
print(f"Error processing segment {i+1} with image {img_path} and audio {vo_path}: {e}")
continue # Skip problematic segment
if not video_clips_list:
return "Error: No video segments could be created.", None
final_vid = concatenate_videoclips(video_clips_list, method="compose", transition=VideoFileClip.crossfadein(0.5)) # Crossfade transition
if background_music_path and os.path.exists(background_music_path):
music = AudioFileClip(background_music_path).volumex(0.15) # Lower volume
if music.duration > final_vid.duration:
music = music.subclip(0, final_vid.duration)
# Ensure final_vid has an audio track before composing
if final_vid.audio is None and video_clips_list and video_clips_list[0].audio:
# If concatenate_videoclips dropped audio, re-add from first segment (or combine all)
# This can happen if first clip has no audio. Better to combine all VOs first.
combined_vo = concatenate_audioclips([vc.audio for vc in video_clips_list if vc.audio])
final_vid = final_vid.set_audio(combined_vo)
if final_vid.audio: # Check again
final_audio = CompositeAudioClip([final_vid.audio, music])
final_vid = final_vid.set_audio(final_audio)
else:
print("Warning: Final video has no primary audio track to mix music with.")
final_vid = final_vid.set_audio(music) # Use only music if no VOs
output_filepath = os.path.join(TEMP_DIR, "final_output_video.mp4")
try:
final_vid.write_videofile(output_filepath, codec="libx264", audio_codec="aac", fps=VIDEO_FPS, threads=4, preset='medium') # Added threads and preset
return f"Video created: {output_filepath}", output_filepath
except Exception as e:
return f"Error writing final video: {e}", None
finally:
# Close all clips
for clip in video_clips_list:
if clip.audio: clip.audio.close()
clip.close()
if 'music' in locals() and music.reader: music.close()
if final_vid.audio: final_vid.audio.close()
if final_vid.reader: final_vid.close()
# --- Main Gradio Function ---
def generate_youtube_video(niche_input, progress=gr.Progress(track_tqdm=True)):
if not GEMINI_API_KEY or not YOUTUBE_API_KEY or not parler_model or not youtube_service or not gemini_model:
missing = []
if not GEMINI_API_KEY: missing.append("Gemini API Key")
if not YOUTUBE_API_KEY: missing.append("YouTube API Key")
if not parler_model: missing.append("Parler-TTS models")
if not youtube_service: missing.append("YouTube service")
if not gemini_model: missing.append("Gemini service")
return None, f"ERROR: Required services/API keys not initialized: {', '.join(missing)}. Please check your .env file and console logs."
cleanup_temp_files()
log_messages = ["Process Started...\n"]
progress(0.05, desc="Generating video ideas...")
log_messages.append("1. Generating Video Ideas...")
ideas_prompt = get_idea_generation_prompt_template(niche_input)
raw_ideas_text = query_gemini(ideas_prompt)
if "Error:" in raw_ideas_text:
log_messages.append(raw_ideas_text)
return None, "\n".join(log_messages)
parsed_ideas = parse_generated_ideas(raw_ideas_text)
if not parsed_ideas:
log_messages.append("Error: No ideas parsed from Gemini response.")
return None, "\n".join(log_messages)
log_messages.append(f"Generated {len(parsed_ideas)} ideas.")
# For UI, let's display the ideas (optional)
# log_messages.append("Ideas:\n" + "\n".join([f"- {i['title']}" for i in parsed_ideas]))
progress(0.15, desc="Selecting viral idea...")
log_messages.append("\n2. Selecting Most Viral Idea...")
ideas_for_selection_prompt = "\n---\n".join([f"Title: {i['title']}\nDescription: {i['description']}" for i in parsed_ideas])
selection_prompt = get_viral_selection_prompt_template(ideas_for_selection_prompt)
selected_title_raw = query_gemini(selection_prompt)
if "Error:" in selected_title_raw:
log_messages.append(f"Error selecting idea: {selected_title_raw}. Using first idea.")
chosen_idea = parsed_ideas[0]
else:
selected_title = selected_title_raw.replace("Most Viral Title:", "").strip()
chosen_idea = next((idea for idea in parsed_ideas if idea["title"].strip().lower() == selected_title.lower()), parsed_ideas[0])
log_messages.append(f"Chosen Idea: '{chosen_idea['title']}'")
progress(0.25, desc="Generating script...")
log_messages.append(f"\n3. Generating Script for '{chosen_idea['title']}'...")
script_prompt = get_script_generation_prompt_template(chosen_idea['title'], chosen_idea['description'])
raw_script_text = query_gemini(script_prompt)
if "Error:" in raw_script_text:
log_messages.append(raw_script_text)
химичСский return None, "\n".join(log_messages)
script_segments = parse_generated_script(raw_script_text)
if not script_segments:
log_messages.append("Error: No script segments parsed.")
return None, "\n".join(log_messages)
log_messages.append(f"Script generated with {len(script_segments)} segments (limited to {MAX_SCRIPT_SEGMENTS_FOR_DEMO} for demo).")
progress(0.40, desc="Generating voiceovers...")
log_messages.append("\n4. Generating Voiceovers...")
voiceover_paths = []
for i, segment in enumerate(progress.tqdm(script_segments, desc="TTS Progress")):
vo_text = segment['voiceover']
if not vo_text: continue # Skip if no voiceover text
audio_filename = f"segment_{i+1}_audio.wav"
path = text_to_speech(vo_text, SPEAKER_DESCRIPTION_FOR_TTS, audio_filename)
if path:
voiceover_paths.append(path)
log_messages.append(f" - Voiceover for segment {i+1} created.")
else:
log_messages.append(f" - Failed voiceover for segment {i+1}.")
if not voiceover_paths or len(voiceover_paths) < len(script_segments):
log_messages.append("Warning: Not all voiceovers could be generated.")
if not voiceover_paths:
return None, "\n".join(log_messages) # Critical failure if NO voiceovers
progress(0.60, desc="Fetching images...")
log_messages.append("\n5. Fetching Images...")
all_image_paths_for_video = []
for i, segment in enumerate(progress.tqdm(script_segments, desc="Image Fetching")):
keywords = segment['image_keywords']
if not keywords: keywords = [chosen_idea['title']] # Fallback to title
# Fetch one image per segment
img_path_list = fetch_unsplash_images(keywords, num_images=IMAGES_PER_SEGMENT)
if img_path_list:
all_image_paths_for_video.append(img_path_list[0]) # Take the first image found
log_messages.append(f" - Image for segment {i+1} using keywords '{', '.join(keywords)}' fetched: {os.path.basename(img_path_list[0])}")
else:
log_messages.append(f" - No image found for segment {i+1} with keywords '{', '.join(keywords)}'. Using placeholder.")
placeholder_img = get_placeholder_images(keywords,1) # Use the function that creates/downloads a placeholder
if placeholder_img:
all_image_paths_for_video.append(placeholder_img[0])
else: # Absolute fallback
log_messages.append(" - CRITICAL: Could not get even a placeholder image. Video might fail.")
# For robustness, ensure a default image exists if this happens
default_img_path = os.path.join(TEMP_DIR, "images", "default_img.jpg")
if not os.path.exists(default_img_path): # Create a dummy if it doesn't exist
try:
from PIL import Image
Image.new('RGB', (VIDEO_WIDTH, VIDEO_HEIGHT), color = 'black').save(default_img_path)
all_image_paths_for_video.append(default_img_path)
except ImportError:
log_messages.append("PIL/Pillow not installed, cannot create dummy image.")
return None, "\n".join(log_messages) # Can't proceed without images
else:
all_image_paths_for_video.append(default_img_path)
if len(all_image_paths_for_video) < len(voiceover_paths):
log_messages.append("Warning: Not enough images fetched for all voiceover segments. Video might be shorter or reuse images.")
# Pad with last image if necessary, or a default
while len(all_image_paths_for_video) < len(voiceover_paths) and all_image_paths_for_video:
all_image_paths_for_video.append(all_image_paths_for_video[-1])
if not all_image_paths_for_video: # Still no images
log_messages.append("Fatal Error: No images available for video creation.")
return None, "\n".join(log_messages)
progress(0.75, desc="Finding background music...")
log_messages.append("\n6. Finding Background Music...")
music_search_keywords = chosen_idea.get("keywords", []) + [niche_input, "cinematic", "calm"]
music_status, music_file_path = find_and_download_music(music_search_keywords)
log_messages.append(f" - {music_status}")
progress(0.85, desc="Assembling video...")
log_messages.append("\n7. Assembling Video...")
# Make sure number of images matches number of VOs for the video processor
# The video processor already has some logic, but let's be explicit here
final_images = all_image_paths_for_video[:len(voiceover_paths)]
video_status, final_video_path = create_video(final_images, voiceover_paths, script_segments, music_file_path)
log_messages.append(f" - {video_status}")
if not final_video_path:
return None, "\n".join(log_messages)
progress(1.0, desc="Process Complete!")
log_messages.append("\nProcess Complete! Video ready.")
return final_video_path, "\n".join(log_messages)
# --- Gradio UI ---
css = """
.gradio-container { font-family: 'Roboto', sans-serif; }
.gr-button { background-color: #FF7F50; color: white; border-radius: 8px; }
.gr-button:hover { background-color: #FF6347; }
footer {display: none !important;}
""" # Hide default Gradio footer
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange", secondary_hue="red"), css=css) as demo:
gr.Markdown(
"""
<div style="text-align: center;">
<img src="https://i.imgur.com/J20hQ9h.png" alt="RoboNuggets Logo" style="width:100px; height:auto; margin-bottom: 5px;">
<h1>AI YouTube Video Creator (R28 LongForm Style)</h1>
<p>Automate your YouTube content creation! Enter a niche, and let AI handle the rest.</p>
</div>
"""
)
with gr.Row():
niche_textbox = gr.Textbox(
label="Enter Video Niche or Specific Topic",
placeholder="e.g., 'The Philosophy of Stoicism for Modern Life', 'Beginner's Guide to Urban Gardening'",
value="The Stoic Lion: Finding Calm in Chaos" # Default value from video
)
create_button = gr.Button("✨ Create Video ✨", variant="primary")
with gr.Accordion("πŸ“Š Process Log & Output", open=True):
log_output = gr.Textbox(label="Log", lines=15, interactive=False, placeholder="Process updates will appear here...")
video_output = gr.Video(label="Generated Video")
create_button.click(
fn=generate_youtube_video,
inputs=[niche_textbox],
outputs=[video_output, log_output]
)
gr.Markdown(
"""
---
*Powered by RoboNuggets AI*
*(Note: This is a demo. Image scraping from Unsplash can be unreliable. Ensure API keys are set in .env)*
"""
)
if __name__ == "__main__":
# Ensure temp directory exists
os.makedirs(os.path.join(TEMP_DIR, "images"), exist_ok=True)
os.makedirs(os.path.join(TEMP_DIR, "audio_segments"), exist_ok=True)
print("Starting Gradio App...")
demo.launch(debug=True, share=False) # share=True for public link (use with caution and ngrok)