Closer with contours
Browse files- interpretter_notes.py +10 -1
- understand.py +73 -10
interpretter_notes.py
CHANGED
|
@@ -130,4 +130,13 @@ array([[1907, 887],
|
|
| 130 |
"""
|
| 131 |
>>> cv.boundingRect(c[0])
|
| 132 |
(399, 340, 5, 3)
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
"""
|
| 131 |
>>> cv.boundingRect(c[0])
|
| 132 |
(399, 340, 5, 3)
|
| 133 |
+
|
| 134 |
+
>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
|
| 135 |
+
((399, 300), (538, 392))
|
| 136 |
+
>>> make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
|
| 137 |
+
(399, 300, 140, 93)
|
| 138 |
+
>>> cv.boundingRect(c[0])
|
| 139 |
+
(399, 340, 5, 3)
|
| 140 |
+
>>> cv.boundingRect(c[1])
|
| 141 |
+
(409, 300, 130, 93)
|
| 142 |
+
"""
|
understand.py
CHANGED
|
@@ -103,9 +103,9 @@ def get_coordinates_for_bb_simple(map_to_use, label_id):
|
|
| 103 |
else:
|
| 104 |
mask = (map_to_use.numpy() == label_id)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
x_max, x_min = max(
|
| 108 |
-
y_max, y_min = max(
|
| 109 |
return (x_min, y_min), (x_max, y_max)
|
| 110 |
|
| 111 |
def make_simple_box(left_top, right_bottom, map_size):
|
|
@@ -123,7 +123,7 @@ def make_simple_box(left_top, right_bottom, map_size):
|
|
| 123 |
plt.show()
|
| 124 |
|
| 125 |
|
| 126 |
-
def
|
| 127 |
"""
|
| 128 |
map_to_use: You have to pass in `results["segmentation"]`
|
| 129 |
"""
|
|
@@ -137,14 +137,15 @@ def test(map_to_use, label_id):
|
|
| 137 |
left_x, top_y = lt
|
| 138 |
right_x, bottom_y = rb
|
| 139 |
|
| 140 |
-
mask[left_x:right_x
|
| 141 |
-
mask[left_x:right_x
|
| 142 |
-
mask[
|
| 143 |
-
mask[
|
| 144 |
|
| 145 |
visual_mask = (mask* 255).astype(np.uint8)
|
| 146 |
visual_mask = Image.fromarray(visual_mask)
|
| 147 |
-
plt.imshow(
|
|
|
|
| 148 |
plt.show()
|
| 149 |
|
| 150 |
def contour_map(map_to_use, label_id):
|
|
@@ -166,4 +167,66 @@ def contour_map(map_to_use, label_id):
|
|
| 166 |
|
| 167 |
# Idea for determining if close
|
| 168 |
# https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
|
| 169 |
-
# Bing Search: cv determine if 2 contours belong together
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
else:
|
| 104 |
mask = (map_to_use.numpy() == label_id)
|
| 105 |
|
| 106 |
+
y_vals, x_vals = np.where(mask==True)
|
| 107 |
+
x_max, x_min = max(x_vals), min(x_vals)
|
| 108 |
+
y_max, y_min = max(y_vals), min(y_vals)
|
| 109 |
return (x_min, y_min), (x_max, y_max)
|
| 110 |
|
| 111 |
def make_simple_box(left_top, right_bottom, map_size):
|
|
|
|
| 123 |
plt.show()
|
| 124 |
|
| 125 |
|
| 126 |
+
def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE):
|
| 127 |
"""
|
| 128 |
map_to_use: You have to pass in `results["segmentation"]`
|
| 129 |
"""
|
|
|
|
| 137 |
left_x, top_y = lt
|
| 138 |
right_x, bottom_y = rb
|
| 139 |
|
| 140 |
+
mask[top_y, left_x:right_x] = .5
|
| 141 |
+
mask[bottom_y, left_x:right_x] = .5
|
| 142 |
+
mask[ top_y:bottom_y, left_x] = .5
|
| 143 |
+
mask[ top_y:bottom_y, right_x] = .5
|
| 144 |
|
| 145 |
visual_mask = (mask* 255).astype(np.uint8)
|
| 146 |
visual_mask = Image.fromarray(visual_mask)
|
| 147 |
+
plt.imshow(img_obj)
|
| 148 |
+
plt.imshow(visual_mask, alpha=0.25)
|
| 149 |
plt.show()
|
| 150 |
|
| 151 |
def contour_map(map_to_use, label_id):
|
|
|
|
| 167 |
|
| 168 |
# Idea for determining if close
|
| 169 |
# https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
|
| 170 |
+
# Bing Search: cv determine if 2 contours belong together
|
| 171 |
+
|
| 172 |
+
def find_if_close(contour1, contour2, c_dist=50):
|
| 173 |
+
"""
|
| 174 |
+
Source: https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
|
| 175 |
+
|
| 176 |
+
"""
|
| 177 |
+
row1, row2 = contour1.shape[0], contour2.shape[0]
|
| 178 |
+
for i in range(row1):
|
| 179 |
+
for j in range(row2):
|
| 180 |
+
dist = np.linalg.norm(contour1[i]-contour2[j])
|
| 181 |
+
if abs(dist) < c_dist:
|
| 182 |
+
return True
|
| 183 |
+
elif i == (row1-1) and j == (row2-1):
|
| 184 |
+
return False
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def make_new_bounding_box(bb1, bb2):
|
| 188 |
+
x1, y1, w1, h1 = bb1
|
| 189 |
+
x2, y2, w2, h2 = bb2
|
| 190 |
+
new_x = min(x1, x2)
|
| 191 |
+
new_y = min(y1, y2)
|
| 192 |
+
new_w = abs(max(x1+w1, x2+w2) - new_x)
|
| 193 |
+
new_h = abs(max(y1+h1, y2+h2) - new_y)
|
| 194 |
+
|
| 195 |
+
return (new_x, new_y, new_w, new_h)
|
| 196 |
+
|
| 197 |
+
def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE, v="cv"):
|
| 198 |
+
"""
|
| 199 |
+
map_to_use: You have to pass in `results["segmentation"]`
|
| 200 |
+
v: version of bounding box
|
| 201 |
+
cv, coord
|
| 202 |
+
"""
|
| 203 |
+
if torch.cuda.is_available():
|
| 204 |
+
mask = (map_to_use.cpu().numpy() == label_id)
|
| 205 |
+
else:
|
| 206 |
+
mask = (map_to_use.numpy() == label_id)
|
| 207 |
+
|
| 208 |
+
if v == "cv":
|
| 209 |
+
c, v = contour_map(map_to_use, label_id)
|
| 210 |
+
x, y, w, h = make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
|
| 211 |
+
lt = (x, y)
|
| 212 |
+
rb = (x + w, y + h)
|
| 213 |
+
left_x, top_y = lt
|
| 214 |
+
right_x, bottom_y = rb
|
| 215 |
+
elif v == "coord":
|
| 216 |
+
lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
|
| 217 |
+
left_x, top_y = lt
|
| 218 |
+
right_x, bottom_y = rb
|
| 219 |
+
else:
|
| 220 |
+
print(f"Not available `v` command {v}")
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
mask[top_y, left_x:right_x] = .5
|
| 224 |
+
mask[bottom_y, left_x:right_x] = .5
|
| 225 |
+
mask[ top_y:bottom_y, left_x] = .5
|
| 226 |
+
mask[ top_y:bottom_y, right_x] = .5
|
| 227 |
+
|
| 228 |
+
visual_mask = (mask* 255).astype(np.uint8)
|
| 229 |
+
visual_mask = Image.fromarray(visual_mask)
|
| 230 |
+
plt.imshow(img_obj)
|
| 231 |
+
plt.imshow(visual_mask, alpha=0.25)
|
| 232 |
+
plt.show(block=False)
|