Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -63,47 +63,49 @@ class GANRiskAnalyzer:
|
|
63 |
# Risk Analysis
|
64 |
def analyze_financial_data(file):
|
65 |
try:
|
66 |
-
#
|
67 |
-
data = pd.read_csv(file, encoding="utf-8", error_bad_lines=False)
|
68 |
except UnicodeDecodeError:
|
69 |
-
# Fallback for
|
70 |
-
|
|
|
|
|
|
|
71 |
except Exception as e:
|
72 |
-
return f"An error occurred
|
73 |
|
74 |
# Handle empty or malformed data
|
75 |
if data.empty:
|
76 |
-
return "The uploaded file is empty or has an invalid structure."
|
77 |
|
78 |
-
#
|
79 |
required_columns = ["Revenue", "Profit", "Loss", "Expenses", "Risk_Level"]
|
80 |
if not all(column in data.columns for column in required_columns):
|
81 |
-
return "The
|
82 |
|
83 |
-
# Data Preprocessing
|
84 |
try:
|
|
|
85 |
X = data[["Revenue", "Profit", "Loss", "Expenses"]].dropna()
|
86 |
y = data["Risk_Level"].dropna()
|
87 |
|
88 |
-
# Check for empty rows after cleaning
|
89 |
if X.empty or y.empty:
|
90 |
-
return "The data
|
91 |
-
|
92 |
scaler = StandardScaler()
|
93 |
X_scaled = scaler.fit_transform(X)
|
94 |
-
|
95 |
# Dimensionality Reduction
|
96 |
pca = PCA(n_components=2)
|
97 |
X_pca = pca.fit_transform(X_scaled)
|
98 |
-
|
99 |
# Train-Test Split
|
100 |
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
|
101 |
-
|
102 |
# Gradient Boosting Classifier
|
103 |
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5)
|
104 |
model.fit(X_train, y_train)
|
105 |
y_pred = model.predict(X_test)
|
106 |
-
|
107 |
accuracy = accuracy_score(y_test, y_pred)
|
108 |
report = classification_report(y_test, y_pred, output_dict=True)
|
109 |
|
@@ -112,12 +114,12 @@ def analyze_financial_data(file):
|
|
112 |
gan.train(torch.tensor(X_pca, dtype=torch.float32), epochs=200)
|
113 |
anomalies = gan.generate(n_samples=5, input_dim=X_pca.shape[1])
|
114 |
|
115 |
-
#
|
116 |
total_revenue = data["Revenue"].sum()
|
117 |
total_profit = data["Profit"].sum()
|
118 |
total_loss = data["Loss"].sum()
|
119 |
|
120 |
-
|
121 |
"Accuracy": f"{accuracy * 100:.2f}%",
|
122 |
"Classification Report": report,
|
123 |
"Generated Anomalies (GAN)": anomalies.tolist(),
|
@@ -128,23 +130,22 @@ def analyze_financial_data(file):
|
|
128 |
"Net Balance": f"${(total_revenue - total_loss):,.2f}"
|
129 |
}
|
130 |
}
|
131 |
-
return insights
|
132 |
except Exception as e:
|
133 |
-
return f"An error occurred during analysis: {str(e)}"
|
134 |
|
|
|
135 |
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
|
136 |
gr.Markdown("# **AI Risk Analyst Agent**")
|
137 |
gr.Markdown(
|
138 |
"Analyze your financial risks and identify anomalies using advanced AI models. Upload financial data in CSV format to get started."
|
139 |
)
|
140 |
-
|
141 |
with gr.Row():
|
142 |
with gr.Column():
|
143 |
-
data_file = gr.File(label="Upload Financial Data (CSV)")
|
144 |
submit_button = gr.Button("Analyze")
|
145 |
with gr.Column():
|
146 |
output = gr.JSON(label="Risk Analysis Insights")
|
147 |
|
148 |
-
submit_button.click(analyze_financial_data, inputs=
|
149 |
|
150 |
interface.launch()
|
|
|
63 |
# Risk Analysis
|
64 |
def analyze_financial_data(file):
|
65 |
try:
|
66 |
+
# Read the uploaded CSV file
|
67 |
+
data = pd.read_csv(file.name, encoding="utf-8", error_bad_lines=False)
|
68 |
except UnicodeDecodeError:
|
69 |
+
# Fallback for non-UTF-8 encoding
|
70 |
+
try:
|
71 |
+
data = pd.read_csv(file.name, encoding="ISO-8859-1", error_bad_lines=False)
|
72 |
+
except Exception as e:
|
73 |
+
return {"error": f"Failed to read file: {str(e)}"}
|
74 |
except Exception as e:
|
75 |
+
return {"error": f"An unexpected error occurred: {str(e)}"}
|
76 |
|
77 |
# Handle empty or malformed data
|
78 |
if data.empty:
|
79 |
+
return {"error": "The uploaded file is empty or has an invalid structure."}
|
80 |
|
81 |
+
# Validate required columns
|
82 |
required_columns = ["Revenue", "Profit", "Loss", "Expenses", "Risk_Level"]
|
83 |
if not all(column in data.columns for column in required_columns):
|
84 |
+
return {"error": f"The CSV must include these columns: {', '.join(required_columns)}"}
|
85 |
|
|
|
86 |
try:
|
87 |
+
# Data Preprocessing
|
88 |
X = data[["Revenue", "Profit", "Loss", "Expenses"]].dropna()
|
89 |
y = data["Risk_Level"].dropna()
|
90 |
|
|
|
91 |
if X.empty or y.empty:
|
92 |
+
return {"error": "The data contains missing values or invalid rows after cleaning."}
|
93 |
+
|
94 |
scaler = StandardScaler()
|
95 |
X_scaled = scaler.fit_transform(X)
|
96 |
+
|
97 |
# Dimensionality Reduction
|
98 |
pca = PCA(n_components=2)
|
99 |
X_pca = pca.fit_transform(X_scaled)
|
100 |
+
|
101 |
# Train-Test Split
|
102 |
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
|
103 |
+
|
104 |
# Gradient Boosting Classifier
|
105 |
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5)
|
106 |
model.fit(X_train, y_train)
|
107 |
y_pred = model.predict(X_test)
|
108 |
+
|
109 |
accuracy = accuracy_score(y_test, y_pred)
|
110 |
report = classification_report(y_test, y_pred, output_dict=True)
|
111 |
|
|
|
114 |
gan.train(torch.tensor(X_pca, dtype=torch.float32), epochs=200)
|
115 |
anomalies = gan.generate(n_samples=5, input_dim=X_pca.shape[1])
|
116 |
|
117 |
+
# Insights
|
118 |
total_revenue = data["Revenue"].sum()
|
119 |
total_profit = data["Profit"].sum()
|
120 |
total_loss = data["Loss"].sum()
|
121 |
|
122 |
+
return {
|
123 |
"Accuracy": f"{accuracy * 100:.2f}%",
|
124 |
"Classification Report": report,
|
125 |
"Generated Anomalies (GAN)": anomalies.tolist(),
|
|
|
130 |
"Net Balance": f"${(total_revenue - total_loss):,.2f}"
|
131 |
}
|
132 |
}
|
|
|
133 |
except Exception as e:
|
134 |
+
return {"error": f"An error occurred during analysis: {str(e)}"}
|
135 |
|
136 |
+
# Gradio Interface
|
137 |
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
|
138 |
gr.Markdown("# **AI Risk Analyst Agent**")
|
139 |
gr.Markdown(
|
140 |
"Analyze your financial risks and identify anomalies using advanced AI models. Upload financial data in CSV format to get started."
|
141 |
)
|
|
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
144 |
+
data_file = gr.File(label="Upload Financial Data (CSV)", file_types=[".csv"])
|
145 |
submit_button = gr.Button("Analyze")
|
146 |
with gr.Column():
|
147 |
output = gr.JSON(label="Risk Analysis Insights")
|
148 |
|
149 |
+
submit_button.click(analyze_financial_data, inputs=data_file, outputs=output)
|
150 |
|
151 |
interface.launch()
|