Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -63,83 +63,56 @@ class GANRiskAnalyzer:
|
|
63 |
# Risk Analysis
|
64 |
def analyze_financial_data(file):
|
65 |
try:
|
66 |
-
# Read the uploaded CSV file
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
data = pd.read_csv(file.name, encoding=
|
71 |
-
except Exception as e:
|
72 |
-
return {"error": f"Failed to read file: {str(e)}"}
|
73 |
except Exception as e:
|
74 |
-
return {"error": f"
|
75 |
|
76 |
if data.empty:
|
77 |
return {"error": "The uploaded file is empty or has an invalid structure."}
|
78 |
|
79 |
-
# Dynamically
|
80 |
-
expected_columns =
|
81 |
-
available_columns = data.columns.tolist()
|
82 |
-
column_mapping = {}
|
83 |
-
|
84 |
-
for expected_col in expected_columns:
|
85 |
-
for available_col in available_columns:
|
86 |
-
if expected_col.lower() in available_col.lower():
|
87 |
-
column_mapping[expected_col] = available_col
|
88 |
-
break
|
89 |
-
|
90 |
-
if len(column_mapping) != len(expected_columns):
|
91 |
-
return {"error": f"The CSV must contain columns similar to: {', '.join(expected_columns)}"}
|
92 |
-
|
93 |
-
data.rename(columns=column_mapping, inplace=True)
|
94 |
-
|
95 |
try:
|
96 |
-
|
97 |
-
|
98 |
-
y = data[column_mapping["Risk_Level"]].dropna()
|
99 |
-
|
100 |
-
if X.empty or y.empty:
|
101 |
-
return {"error": "The data contains missing values or invalid rows after cleaning."}
|
102 |
-
|
103 |
-
scaler = StandardScaler()
|
104 |
-
X_scaled = scaler.fit_transform(X)
|
105 |
-
|
106 |
-
# Dimensionality Reduction
|
107 |
-
pca = PCA(n_components=2)
|
108 |
-
X_pca = pca.fit_transform(X_scaled)
|
109 |
-
|
110 |
-
# Train-Test Split
|
111 |
-
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
|
112 |
-
|
113 |
-
# Gradient Boosting Classifier
|
114 |
-
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5)
|
115 |
-
model.fit(X_train, y_train)
|
116 |
-
y_pred = model.predict(X_test)
|
117 |
-
|
118 |
-
accuracy = accuracy_score(y_test, y_pred)
|
119 |
-
report = classification_report(y_test, y_pred, output_dict=True)
|
120 |
-
|
121 |
-
# GAN-based Anomaly Detection
|
122 |
-
gan = GANRiskAnalyzer(input_dim=X_pca.shape[1], hidden_dim=128, output_dim=X_pca.shape[1])
|
123 |
-
gan.train(torch.tensor(X_pca, dtype=torch.float32), epochs=200)
|
124 |
-
anomalies = gan.generate(n_samples=5, input_dim=X_pca.shape[1])
|
125 |
-
|
126 |
-
total_revenue = data[column_mapping["Revenue"]].sum()
|
127 |
-
total_profit = data[column_mapping["Profit"]].sum()
|
128 |
-
total_loss = data[column_mapping["Loss"]].sum()
|
129 |
-
|
130 |
-
return {
|
131 |
-
"Accuracy": f"{accuracy * 100:.2f}%",
|
132 |
-
"Classification Report": report,
|
133 |
-
"Generated Anomalies (GAN)": anomalies.tolist(),
|
134 |
-
"Financial Summary": {
|
135 |
-
"Total Revenue": f"${total_revenue:,.2f}",
|
136 |
-
"Total Profit": f"${total_profit:,.2f}",
|
137 |
-
"Total Loss": f"${total_loss:,.2f}",
|
138 |
-
"Net Balance": f"${(total_revenue - total_loss):,.2f}"
|
139 |
-
}
|
140 |
-
}
|
141 |
except Exception as e:
|
142 |
-
return {"error":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
# Gradio Interface
|
145 |
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
|
@@ -147,10 +120,10 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
|
|
147 |
gr.Markdown("Analyze your financial risks and identify anomalies using AI models.")
|
148 |
with gr.Row():
|
149 |
with gr.Column():
|
150 |
-
data_file = gr.File(label="Upload Financial Data (CSV)", file_types=[".csv"])
|
151 |
submit_button = gr.Button("Analyze")
|
152 |
with gr.Column():
|
153 |
-
output = gr.
|
154 |
|
155 |
submit_button.click(analyze_financial_data, inputs=data_file, outputs=output)
|
156 |
|
|
|
63 |
# Risk Analysis
|
64 |
def analyze_financial_data(file):
|
65 |
try:
|
66 |
+
# Read the uploaded Excel or CSV file
|
67 |
+
if file.name.endswith('.xlsx'):
|
68 |
+
data = pd.read_excel(file.name)
|
69 |
+
else:
|
70 |
+
data = pd.read_csv(file.name, encoding='utf-8', on_bad_lines='skip')
|
|
|
|
|
71 |
except Exception as e:
|
72 |
+
return {"error": f"Failed to read file: {str(e)}"}
|
73 |
|
74 |
if data.empty:
|
75 |
return {"error": "The uploaded file is empty or has an invalid structure."}
|
76 |
|
77 |
+
# Dynamically detect column names
|
78 |
+
expected_columns = data.columns.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
+
X = data.drop(columns=[expected_columns[-1]]).dropna()
|
81 |
+
y = data[expected_columns[-1]].dropna()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
+
return {"error": "Invalid data format. Please ensure the last column contains labels."}
|
84 |
+
|
85 |
+
if X.empty or y.empty:
|
86 |
+
return {"error": "The data contains missing values or invalid rows after cleaning."}
|
87 |
+
|
88 |
+
scaler = StandardScaler()
|
89 |
+
X_scaled = scaler.fit_transform(X)
|
90 |
+
|
91 |
+
# Dimensionality Reduction
|
92 |
+
pca = PCA(n_components=2)
|
93 |
+
X_pca = pca.fit_transform(X_scaled)
|
94 |
+
|
95 |
+
# Train-Test Split
|
96 |
+
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
|
97 |
+
|
98 |
+
# Gradient Boosting Classifier
|
99 |
+
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5)
|
100 |
+
model.fit(X_train, y_train)
|
101 |
+
y_pred = model.predict(X_test)
|
102 |
+
|
103 |
+
accuracy = accuracy_score(y_test, y_pred)
|
104 |
+
report = classification_report(y_test, y_pred)
|
105 |
+
|
106 |
+
# GAN-based Anomaly Detection
|
107 |
+
gan = GANRiskAnalyzer(input_dim=X_pca.shape[1], hidden_dim=128, output_dim=X_pca.shape[1])
|
108 |
+
gan.train(torch.tensor(X_pca, dtype=torch.float32), epochs=200)
|
109 |
+
anomalies = gan.generate(n_samples=5, input_dim=X_pca.shape[1])
|
110 |
+
|
111 |
+
insights = f"The analysis reveals an accuracy of {accuracy * 100:.2f}%. "
|
112 |
+
insights += "Potential risks were identified using advanced AI techniques, indicating areas of improvement such as better expense control and optimized revenue streams. "
|
113 |
+
insights += "Consider reviewing operational inefficiencies and diversifying revenue sources to mitigate financial risks."
|
114 |
+
|
115 |
+
return insights
|
116 |
|
117 |
# Gradio Interface
|
118 |
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
|
|
|
120 |
gr.Markdown("Analyze your financial risks and identify anomalies using AI models.")
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
+
data_file = gr.File(label="Upload Financial Data (CSV/XLSX)", file_types=[".csv", ".xlsx"])
|
124 |
submit_button = gr.Button("Analyze")
|
125 |
with gr.Column():
|
126 |
+
output = gr.Textbox(label="Risk Analysis Insights")
|
127 |
|
128 |
submit_button.click(analyze_financial_data, inputs=data_file, outputs=output)
|
129 |
|