Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
8 |
+
|
9 |
+
# Load depth estimation model
|
10 |
+
model_name = "Intel/dpt-large"
|
11 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained(model_name)
|
12 |
+
depth_model = DPTForDepthEstimation.from_pretrained(model_name)
|
13 |
+
depth_model.eval()
|
14 |
+
|
15 |
+
def estimate_depth(image):
|
16 |
+
"""Estimate depth map from image."""
|
17 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = depth_model(**inputs)
|
20 |
+
depth = outputs.predicted_depth.squeeze().numpy()
|
21 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
|
22 |
+
return depth.astype(np.uint8)
|
23 |
+
|
24 |
+
def warp_design(cloth_img, design_img):
|
25 |
+
"""Warp the design onto the clothing while preserving folds."""
|
26 |
+
# Convert images to numpy arrays
|
27 |
+
cloth_np = np.array(cloth_img)
|
28 |
+
design_np = np.array(design_img)
|
29 |
+
|
30 |
+
# Estimate depth for fold detection
|
31 |
+
depth_map = estimate_depth(cloth_img)
|
32 |
+
|
33 |
+
# Generate displacement map based on depth
|
34 |
+
displacement_x = cv2.Sobel(depth_map, cv2.CV_32F, 1, 0, ksize=5)
|
35 |
+
displacement_y = cv2.Sobel(depth_map, cv2.CV_32F, 0, 1, ksize=5)
|
36 |
+
|
37 |
+
# Normalize displacement values
|
38 |
+
displacement_x = cv2.normalize(displacement_x, None, -10, 10, cv2.NORM_MINMAX)
|
39 |
+
displacement_y = cv2.normalize(displacement_y, None, -10, 10, cv2.NORM_MINMAX)
|
40 |
+
|
41 |
+
# Warp design using displacement map
|
42 |
+
h, w, _ = cloth_np.shape
|
43 |
+
map_x, map_y = np.meshgrid(np.arange(w), np.arange(h))
|
44 |
+
map_x = np.float32(map_x + displacement_x)
|
45 |
+
map_y = np.float32(map_y + displacement_y)
|
46 |
+
warped_design = cv2.remap(design_np, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
|
47 |
+
|
48 |
+
# Blend images
|
49 |
+
blended = cv2.addWeighted(cloth_np, 0.6, warped_design, 0.4, 0)
|
50 |
+
return Image.fromarray(blended)
|
51 |
+
|
52 |
+
def main(cloth, design):
|
53 |
+
return warp_design(cloth, design)
|
54 |
+
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=main,
|
57 |
+
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
58 |
+
outputs=gr.Image(type="pil"),
|
59 |
+
title="AI Cloth Design Warping",
|
60 |
+
description="Upload a clothing image and a design to blend it naturally, considering fabric folds."
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
iface.launch()
|