Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
|
|
8 |
|
9 |
# Load depth estimation model
|
10 |
model_name = "Intel/dpt-large"
|
@@ -30,39 +31,18 @@ def warp_design(cloth_img, design_img):
|
|
30 |
cloth_np = np.array(cloth_img)
|
31 |
design_np = np.array(design_img)
|
32 |
h, w, _ = cloth_np.shape
|
33 |
-
dh, dw, _ = design_np.shape
|
34 |
-
|
35 |
-
# Resize design to fit within 70% of the clothing area
|
36 |
-
scale_factor = min(w / dw, h / dh) * 0.7
|
37 |
-
new_w, new_h = int(dw * scale_factor), int(dh * scale_factor)
|
38 |
-
design_np = cv2.resize(design_np, (new_w, new_h))
|
39 |
-
|
40 |
-
# Create blank canvas with transparent background
|
41 |
-
design_canvas = np.zeros_like(cloth_np, dtype=np.uint8)
|
42 |
-
x_offset = (w - new_w) // 2
|
43 |
-
y_offset = (h - new_h) // 2
|
44 |
-
design_canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = design_np
|
45 |
|
46 |
# Estimate depth map
|
47 |
depth_map = estimate_depth(cloth_img)
|
48 |
depth_map = cv2.resize(depth_map, (w, h))
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
displacement_x = cv2.normalize(displacement_x, None, -3, 3, cv2.NORM_MINMAX)
|
55 |
-
displacement_y = cv2.normalize(displacement_y, None, -3, 3, cv2.NORM_MINMAX)
|
56 |
-
|
57 |
-
map_x, map_y = np.meshgrid(np.arange(w), np.arange(h))
|
58 |
-
map_x = np.clip(np.float32(map_x + displacement_x), 0, w - 1)
|
59 |
-
map_y = np.clip(np.float32(map_y + displacement_y), 0, h - 1)
|
60 |
-
warped_design = cv2.remap(design_canvas, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
blended = cloth_np.copy()
|
65 |
-
np.copyto(blended, warped_design, where=(mask[..., None] > 0))
|
66 |
|
67 |
return Image.fromarray(blended)
|
68 |
|
@@ -78,4 +58,4 @@ iface = gr.Interface(
|
|
78 |
)
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
-
iface.launch(share=True)
|
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
8 |
+
import torchvision.transforms.functional as F
|
9 |
|
10 |
# Load depth estimation model
|
11 |
model_name = "Intel/dpt-large"
|
|
|
31 |
cloth_np = np.array(cloth_img)
|
32 |
design_np = np.array(design_img)
|
33 |
h, w, _ = cloth_np.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Estimate depth map
|
36 |
depth_map = estimate_depth(cloth_img)
|
37 |
depth_map = cv2.resize(depth_map, (w, h))
|
38 |
|
39 |
+
# Compute optical flow for warping
|
40 |
+
flow = cv2.calcOpticalFlowFarneback(depth_map, depth_map, None, 0.5, 3, 15, 3, 5, 1.2, 0)
|
41 |
+
flow_map = np.column_stack((flow[..., 0] + np.arange(w), flow[..., 1] + np.arange(h)[:, None]))
|
42 |
+
warped_design = cv2.remap(design_np, flow_map, None, cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Blending
|
45 |
+
blended = cv2.addWeighted(cloth_np, 0.7, warped_design, 0.3, 0)
|
|
|
|
|
46 |
|
47 |
return Image.fromarray(blended)
|
48 |
|
|
|
58 |
)
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
+
iface.launch(share=True)
|