File size: 10,678 Bytes
9862b96
 
ce16d6e
9862b96
 
 
 
 
7335794
 
 
 
 
960b661
7335794
3ecccc5
 
 
 
7335794
9862b96
 
 
 
 
 
 
 
 
 
 
 
3ecccc5
9862b96
 
 
 
 
 
 
 
 
3ecccc5
 
 
9862b96
3ecccc5
9862b96
3ecccc5
9862b96
3ecccc5
9862b96
 
 
 
 
3ecccc5
9862b96
 
 
 
 
 
 
 
 
 
 
3ecccc5
9862b96
 
ce16d6e
9862b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfd5718
9862b96
3ecccc5
9862b96
 
3ecccc5
9862b96
 
7335794
3ecccc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9862b96
 
3ecccc5
 
 
9862b96
 
 
 
 
3ecccc5
 
9862b96
3ecccc5
 
9862b96
3ecccc5
 
 
 
9862b96
 
3ecccc5
 
 
 
 
 
 
9862b96
3ecccc5
 
 
 
 
 
 
 
 
 
 
 
9862b96
3ecccc5
 
 
 
 
 
 
 
 
9862b96
 
3ecccc5
9862b96
 
 
3ecccc5
 
9862b96
3ecccc5
 
 
 
 
 
 
9862b96
 
 
 
 
 
3ecccc5
 
9862b96
 
 
3ecccc5
9862b96
 
3ecccc5
 
9862b96
 
 
 
 
 
3ecccc5
9862b96
3ecccc5
9862b96
 
3ecccc5
9862b96
3ecccc5
9862b96
 
3ecccc5
9862b96
3ecccc5
 
9862b96
 
 
 
 
 
 
 
 
3ecccc5
 
7335794
3ecccc5
7335794
 
3ecccc5
 
 
 
 
 
 
 
9862b96
3ecccc5
 
 
 
 
 
9862b96
 
 
 
ce16d6e
9862b96
960b661
9862b96
960b661
 
 
3ecccc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np

class Options:
    def __init__(self):
        # Default values
        self.fine_height = 256
        self.fine_width = 192
        self.grid_size = 5
        self.use_dropout = False
        self.input_nc = 22
        self.input_nc_B = 1  
        self.tom_input_nc = 26  
        self.tom_output_nc = 4  

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('Linear') != -1:
        init.normal(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm2d') != -1:
        init.normal_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)

def init_weights(net, init_type='normal'):
    print('initialization method [%s]' % init_type)
    net.apply(weights_init_normal)

class FeatureExtraction(nn.Module):
    def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(FeatureExtraction, self).__init__()
        downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
        model = [downconv, nn.ReLU(True), norm_layer(ngf)]
        for i in range(n_layers):
            in_ngf = 2**i * ngf if 2**i * ngf < 512 else 512
            out_ngf = 2**(i+1) * ngf if 2**i * ngf < 512 else 512
            downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
            model += [downconv, nn.ReLU(True), norm_layer(out_ngf)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
        model += [norm_layer(512)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
        self.model = nn.Sequential(*model)
        init_weights(self.model)

class FeatureL2Norm(nn.Module):
    def __init__(self):
        super(FeatureL2Norm, self).__init__()

    def forward(self, feature):
        epsilon = 1e-6
        norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature, norm)

class FeatureCorrelation(nn.Module):
    def __init__(self):
        super(FeatureCorrelation, self).__init__()

    def forward(self, feature_A, feature_B):
        b, c, h, w = feature_A.size()
        feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
        feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
        feature_mul = torch.bmm(feature_B, feature_A)
        return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)

class FeatureRegression(nn.Module):
    def __init__(self, input_nc=512, output_dim=6):
        super(FeatureRegression, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        self.linear = nn.Linear(64 * 4 * 3, output_dim)
        self.tanh = nn.Tanh()

    def forward(self, x):
        x = self.conv(x)
        x = x.contiguous().view(x.size(0), -1)
        x = self.linear(x)
        return self.tanh(x)

class TpsGridGen(nn.Module):
    def __init__(self, out_h=256, out_w=192, grid_size=5):
        super(TpsGridGen, self).__init__()
        self.out_h, self.out_w = out_h, out_w
        self.grid_size = grid_size
        
        # Create grid
        axis_coords = np.linspace(-1, 1, grid_size)
        self.N = grid_size * grid_size
        P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
        P_X = torch.FloatTensor(P_X.reshape(-1, 1))
        P_Y = torch.FloatTensor(P_Y.reshape(-1, 1))
        self.P_X_base = P_X.clone()
        self.P_Y_base = P_Y.clone()
        self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0)
        
        # Grid for interpolation
        grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
        self.grid_X = torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3)
        self.grid_Y = torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3)

    def compute_L_inverse(self, X, Y):
        N = X.size()[0]
        Xmat, Ymat = X.expand(N, N), Y.expand(N, N)
        P_dist_squared = torch.pow(Xmat-Xmat.transpose(0, 1), 2) + torch.pow(Ymat-Ymat.transpose(0, 1), 2)
        P_dist_squared[P_dist_squared == 0] = 1
        K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
        O = torch.FloatTensor(N, 1).fill_(1)
        Z = torch.FloatTensor(3, 3).fill_(0)
        P = torch.cat((O, X, Y), 1)
        L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
        return torch.inverse(L)

    def forward(self, theta):
        theta = theta.contiguous()
        batch_size = theta.size()[0]
        
        # Split theta into point coordinates
        Q_X = theta[:, :self.N].contiguous().view(batch_size, self.N, 1)
        Q_Y = theta[:, self.N:].contiguous().view(batch_size, self.N, 1)
        Q_X = Q_X + self.P_X_base.expand_as(Q_X)
        Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
        
        # Compute weights
        W_X, W_Y = self.apply_theta(Q_X, Q_Y)
        
        # Calculate transformed grid
        points_X, points_Y = self.transform_points(W_X, W_Y)
        return torch.cat((points_X, points_Y), 3)

class GMM(nn.Module):
    def __init__(self, opt=None):
        super(GMM, self).__init__()
        if opt is None:
            opt = Options()
            
        self.extractionA = FeatureExtraction(opt.input_nc)
        self.extractionB = FeatureExtraction(opt.input_nc_B)
        self.l2norm = FeatureL2Norm()
        self.correlation = FeatureCorrelation()
        self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
        self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)

    def forward(self, inputA, inputB):
        featureA = self.extractionA(inputA)
        featureB = self.extractionB(inputB)
        featureA = self.l2norm(featureA)
        featureB = self.l2norm(featureB)
        correlation = self.correlation(featureA, featureB)
        theta = self.regression(correlation)
        grid = self.gridGen(theta)
        return grid, theta

class UnetGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.InstanceNorm2d):
        super(UnetGenerator, self).__init__()
        unet_block = UnetSkipConnectionBlock(
            ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
        
        for _ in range(num_downs - 5):
            unet_block = UnetSkipConnectionBlock(
                ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
                
        unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
        
        self.model = UnetSkipConnectionBlock(
            output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)

    def forward(self, input):
        return self.model(input)

class UnetSkipConnectionBlock(nn.Module):
    def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, 
                 outermost=False, innermost=False, norm_layer=nn.InstanceNorm2d):
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        use_bias = norm_layer == nn.InstanceNorm2d
        
        if input_nc is None:
            input_nc = outer_nc
            
        downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = norm_layer(inner_nc)
        uprelu = nn.ReLU(True)
        upnorm = norm_layer(outer_nc)

        if outermost:
            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]
            model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)

class TOM(nn.Module):
    """ Try-On Module """
    def __init__(self, opt=None):
        super(TOM, self).__init__()
        if opt is None:
            opt = Options()
        
        # Input: [agnostic(3) + warped_design(3) + warped_mask(1) + features(19)] = 26 channels
        self.unet = UnetGenerator(
            input_nc=opt.tom_input_nc,
            output_nc=opt.tom_output_nc,  # [rendered(3) + mask(1)]
            num_downs=6,
            norm_layer=nn.InstanceNorm2d
        )

    def forward(self, x):
        output = self.unet(x)
        p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
        p_rendered = torch.tanh(p_rendered)
        m_composite = torch.sigmoid(m_composite)
        return p_rendered, m_composite

def save_checkpoint(model, save_path):
    if not os.path.exists(os.path.dirname(save_path)):
        os.makedirs(os.path.dirname(save_path))
    torch.save(model.state_dict(), save_path)

def load_checkpoint(model, checkpoint_path, strict=True):
    if not os.path.exists(checkpoint_path):
        raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
    
    state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    model.load_state_dict(state_dict, strict=strict)