Spaces:
Sleeping
Sleeping
File size: 10,678 Bytes
9862b96 ce16d6e 9862b96 7335794 960b661 7335794 3ecccc5 7335794 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 dfd5718 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 7335794 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 7335794 3ecccc5 7335794 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 960b661 9862b96 960b661 3ecccc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np
class Options:
def __init__(self):
# Default values
self.fine_height = 256
self.fine_width = 192
self.grid_size = 5
self.use_dropout = False
self.input_nc = 22
self.input_nc_B = 1
self.tom_input_nc = 26
self.tom_output_nc = 4
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print('initialization method [%s]' % init_type)
net.apply(weights_init_normal)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(FeatureExtraction, self).__init__()
downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
model = [downconv, nn.ReLU(True), norm_layer(ngf)]
for i in range(n_layers):
in_ngf = 2**i * ngf if 2**i * ngf < 512 else 512
out_ngf = 2**(i+1) * ngf if 2**i * ngf < 512 else 512
downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
model += [downconv, nn.ReLU(True), norm_layer(out_ngf)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
model += [norm_layer(512)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
self.model = nn.Sequential(*model)
init_weights(self.model)
class FeatureL2Norm(nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b, c, h, w = feature_A.size()
feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
feature_mul = torch.bmm(feature_B, feature_A)
return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512, output_dim=6):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.conv(x)
x = x.contiguous().view(x.size(0), -1)
x = self.linear(x)
return self.tanh(x)
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, grid_size=5):
super(TpsGridGen, self).__init__()
self.out_h, self.out_w = out_h, out_w
self.grid_size = grid_size
# Create grid
axis_coords = np.linspace(-1, 1, grid_size)
self.N = grid_size * grid_size
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = torch.FloatTensor(P_X.reshape(-1, 1))
P_Y = torch.FloatTensor(P_Y.reshape(-1, 1))
self.P_X_base = P_X.clone()
self.P_Y_base = P_Y.clone()
self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0)
# Grid for interpolation
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
self.grid_X = torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3)
self.grid_Y = torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3)
def compute_L_inverse(self, X, Y):
N = X.size()[0]
Xmat, Ymat = X.expand(N, N), Y.expand(N, N)
P_dist_squared = torch.pow(Xmat-Xmat.transpose(0, 1), 2) + torch.pow(Ymat-Ymat.transpose(0, 1), 2)
P_dist_squared[P_dist_squared == 0] = 1
K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
O = torch.FloatTensor(N, 1).fill_(1)
Z = torch.FloatTensor(3, 3).fill_(0)
P = torch.cat((O, X, Y), 1)
L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
return torch.inverse(L)
def forward(self, theta):
theta = theta.contiguous()
batch_size = theta.size()[0]
# Split theta into point coordinates
Q_X = theta[:, :self.N].contiguous().view(batch_size, self.N, 1)
Q_Y = theta[:, self.N:].contiguous().view(batch_size, self.N, 1)
Q_X = Q_X + self.P_X_base.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
# Compute weights
W_X, W_Y = self.apply_theta(Q_X, Q_Y)
# Calculate transformed grid
points_X, points_Y = self.transform_points(W_X, W_Y)
return torch.cat((points_X, points_Y), 3)
class GMM(nn.Module):
def __init__(self, opt=None):
super(GMM, self).__init__()
if opt is None:
opt = Options()
self.extractionA = FeatureExtraction(opt.input_nc)
self.extractionB = FeatureExtraction(opt.input_nc_B)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.InstanceNorm2d):
super(UnetGenerator, self).__init__()
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
for _ in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
def forward(self, input):
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None,
outermost=False, innermost=False, norm_layer=nn.InstanceNorm2d):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class TOM(nn.Module):
""" Try-On Module """
def __init__(self, opt=None):
super(TOM, self).__init__()
if opt is None:
opt = Options()
# Input: [agnostic(3) + warped_design(3) + warped_mask(1) + features(19)] = 26 channels
self.unet = UnetGenerator(
input_nc=opt.tom_input_nc,
output_nc=opt.tom_output_nc, # [rendered(3) + mask(1)]
num_downs=6,
norm_layer=nn.InstanceNorm2d
)
def forward(self, x):
output = self.unet(x)
p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
return p_rendered, m_composite
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
def load_checkpoint(model, checkpoint_path, strict=True):
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=strict) |