File size: 14,028 Bytes
9862b96
 
ce16d6e
9862b96
 
 
 
 
7335794
 
5bff76a
7335794
 
5bff76a
 
960b661
5bff76a
 
 
 
 
 
 
 
7335794
5bff76a
7335794
9862b96
 
 
 
 
5bff76a
 
9862b96
 
 
 
5bff76a
3ecccc5
9862b96
 
5bff76a
9862b96
5bff76a
 
 
 
 
 
 
 
9862b96
5bff76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ecccc5
9862b96
5bff76a
 
 
3ecccc5
9862b96
 
 
 
 
3ecccc5
9862b96
 
 
 
 
 
 
 
 
 
 
3ecccc5
9862b96
 
ce16d6e
9862b96
 
 
 
 
 
 
 
 
 
 
 
 
5bff76a
9862b96
 
 
 
 
 
dfd5718
9862b96
3ecccc5
9862b96
 
3ecccc5
9862b96
5bff76a
 
7335794
3ecccc5
bfbe0c2
 
 
3ecccc5
bfbe0c2
 
 
 
5bff76a
bfbe0c2
 
3ecccc5
bfbe0c2
3ecccc5
bfbe0c2
 
9862b96
 
bfbe0c2
5bff76a
 
 
bfbe0c2
9862b96
5bff76a
bfbe0c2
9862b96
 
 
3ecccc5
 
9862b96
3ecccc5
bfbe0c2
 
3ecccc5
bfbe0c2
3ecccc5
 
bfbe0c2
 
3ecccc5
 
bfbe0c2
 
 
 
 
 
5bff76a
bfbe0c2
 
 
3ecccc5
 
9862b96
bfbe0c2
 
 
 
 
 
 
5bff76a
bfbe0c2
 
 
5bff76a
 
bfbe0c2
 
 
 
 
 
5bff76a
bfbe0c2
 
5bff76a
3ecccc5
 
 
 
 
 
 
 
 
 
 
 
9862b96
3ecccc5
 
 
 
 
 
 
 
 
9862b96
 
5bff76a
 
 
9862b96
 
 
5bff76a
9862b96
 
3ecccc5
5bff76a
 
9862b96
 
 
 
 
 
5bff76a
 
 
9862b96
3ecccc5
9862b96
 
5bff76a
 
 
9862b96
3ecccc5
9862b96
 
5bff76a
 
 
9862b96
3ecccc5
5bff76a
 
 
 
 
9862b96
 
 
 
 
 
 
 
 
5bff76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ecccc5
7335794
3ecccc5
7335794
 
3ecccc5
 
 
5bff76a
3ecccc5
 
 
9862b96
3ecccc5
 
 
 
 
 
9862b96
 
 
 
ce16d6e
9862b96
960b661
9862b96
960b661
 
 
5bff76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np

class Options:
    def __init__(self):
        # Image dimensions
        self.fine_height = 256
        self.fine_width = 192
        
        # GMM parameters
        self.grid_size = 5
        self.input_nc = 22  # For extractionA
        self.input_nc_B = 1  # For extractionB
        
        # TOM parameters
        self.tom_input_nc = 26  # 3(agnostic) + 3(warped) + 1(mask) + 19(features)
        self.tom_output_nc = 4   # 3(rendered) + 1(composite mask)
        
        # Training settings
        self.use_dropout = False
        self.norm_layer = nn.BatchNorm2d

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('Linear') != -1:
        init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        init.normal_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)

def init_weights(net, init_type='normal'):
    print(f'initialization method [{init_type}]')
    net.apply(weights_init_normal)

class FeatureExtraction(nn.Module):
    def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
        super(FeatureExtraction, self).__init__()
        
        # Build feature extraction layers
        layers = [
            nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1),
            nn.ReLU(True),
            norm_layer(ngf)
        ]
        
        for i in range(n_layers):
            in_channels = min(2**i * ngf, 512)
            out_channels = min(2**(i+1) * ngf, 512)
            layers += [
                nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1),
                nn.ReLU(True),
                norm_layer(out_channels)
            ]
        
        # Final processing blocks
        layers += [
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            norm_layer(512),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True)
        ]
        
        self.model = nn.Sequential(*layers)
        init_weights(self.model)

    def forward(self, x):
        return self.model(x)

class FeatureL2Norm(nn.Module):
    def __init__(self):
        super(FeatureL2Norm, self).__init__()

    def forward(self, feature):
        epsilon = 1e-6
        norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature, norm)

class FeatureCorrelation(nn.Module):
    def __init__(self):
        super(FeatureCorrelation, self).__init__()

    def forward(self, feature_A, feature_B):
        b, c, h, w = feature_A.size()
        feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
        feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
        feature_mul = torch.bmm(feature_B, feature_A)
        return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)

class FeatureRegression(nn.Module):
    def __init__(self, input_nc=512, output_dim=6):
        super(FeatureRegression, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )
        self.linear = nn.Linear(64 * 4 * 3, output_dim)
        self.tanh = nn.Tanh()

    def forward(self, x):
        x = self.conv(x)
        x = x.contiguous().view(x.size(0), -1)
        x = self.linear(x)
        return self.tanh(x)

class TpsGridGen(nn.Module):
    def __init__(self, out_h=256, out_w=192, grid_size=5):
        super(TpsGridGen, self).__init__()
        self.out_h = out_h
        self.out_w = out_w
        self.grid_size = grid_size
        self.N = grid_size * grid_size

        # Create regular grid of control points
        axis_coords = np.linspace(-1, 1, grid_size)
        P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
        P_X = torch.FloatTensor(P_X.reshape(-1, 1))  # (N,1)
        P_Y = torch.FloatTensor(P_Y.reshape(-1, 1))  # (N,1)
        self.register_buffer('P_X', P_X)
        self.register_buffer('P_Y', P_Y)
        
        # Compute inverse matrix L^-1
        self.register_buffer('Li', self.compute_L_inverse(P_X, P_Y))
        
        # Create sampling grid
        grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
        self.register_buffer('grid_X', torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3))  # (1,H,W,1)
        self.register_buffer('grid_Y', torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3))  # (1,H,W,1)

    def compute_L_inverse(self, X, Y):
        N = X.size(0)
        Xmat = X.expand(N, N)
        Ymat = Y.expand(N, N)
        P_dist_squared = torch.pow(Xmat - Xmat.transpose(0, 1), 2) + torch.pow(Ymat - Ymat.transpose(0, 1), 2)
        P_dist_squared[P_dist_squared == 0] = 1  # Avoid log(0)
        K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
        
        # Construct L matrix
        O = torch.FloatTensor(N, 1).fill_(1)
        Z = torch.FloatTensor(3, 3).fill_(0)
        P = torch.cat((O, X, Y), 1)
        L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
        return torch.inverse(L)

    def forward(self, theta):
        batch_size = theta.size(0)
        device = theta.device
        
        # Split theta into x and y components
        Q_X = theta[:, :self.N].contiguous().view(batch_size, self.N, 1)
        Q_Y = theta[:, self.N:].contiguous().view(batch_size, self.N, 1)
        Q_X = Q_X + self.P_X.expand_as(Q_X)
        Q_Y = Q_Y + self.P_Y.expand_as(Q_Y)
        
        # Compute weights
        W_X = torch.bmm(self.Li[:, :self.N, :self.N].expand(batch_size, -1, -1), Q_X)
        W_Y = torch.bmm(self.Li[:, :self.N, :self.N].expand(batch_size, -1, -1), Q_Y)
        
        # Repeat grid for batch processing
        grid_X = self.grid_X.expand(batch_size, -1, -1, -1).to(device)
        grid_Y = self.grid_Y.expand(batch_size, -1, -1, -1).to(device)
        
        # Compute transformed coordinates
        points_X = self.transform_points(grid_X, W_X, Q_X)
        points_Y = self.transform_points(grid_Y, W_Y, Q_Y)
        
        return torch.cat((points_X, points_Y), 3)

    def transform_points(self, grid, W, Q):
        batch_size, h, w, _ = grid.size()
        
        # Compute distance between grid points and control points
        grid_flat = grid.view(batch_size, -1, 1)
        P = torch.cat([self.P_X, self.P_Y], 1).unsqueeze(0).expand(batch_size, -1, -1).to(grid.device)
        delta = grid_flat - P
        
        # Compute U (radial basis function)
        dist_squared = torch.sum(torch.pow(delta, 2), 2, keepdim=True)
        dist_squared[dist_squared == 0] = 1  # Avoid log(0)
        U = torch.mul(dist_squared, torch.log(dist_squared))
        
        # Compute affine + non-affine transformation
        A = torch.cat([
            torch.ones(batch_size, h*w, 1, device=grid.device),
            grid_flat[:, :, 0:1],
            grid_flat[:, :, 1:2]
        ], 2)
        
        points = torch.bmm(A, Q.view(batch_size, 3, -1)) + torch.bmm(U, W.view(batch_size, self.N, -1))
        return points.view(batch_size, h, w, 1)

class GMM(nn.Module):
    def __init__(self, opt=None):
        super(GMM, self).__init__()
        if opt is None:
            opt = Options()
            
        self.extractionA = FeatureExtraction(opt.input_nc)
        self.extractionB = FeatureExtraction(opt.input_nc_B)
        self.l2norm = FeatureL2Norm()
        self.correlation = FeatureCorrelation()
        self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
        self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)

    def forward(self, inputA, inputB):
        featureA = self.extractionA(inputA)
        featureB = self.extractionB(inputB)
        featureA = self.l2norm(featureA)
        featureB = self.l2norm(featureB)
        correlation = self.correlation(featureA, featureB)
        theta = self.regression(correlation)
        grid = self.gridGen(theta)
        return grid, theta

class UnetSkipConnectionBlock(nn.Module):
    def __init__(self, outer_nc, inner_nc, input_nc=None,
                 submodule=None, outermost=False, innermost=False, 
                 norm_layer=nn.InstanceNorm2d, use_dropout=False):
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        use_bias = norm_layer == nn.InstanceNorm2d

        if input_nc is None:
            input_nc = outer_nc
            
        downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
                             stride=2, padding=1, bias=use_bias)
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = norm_layer(inner_nc)
        uprelu = nn.ReLU(True)
        upnorm = norm_layer(outer_nc)

        if outermost:
            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
                                        kernel_size=4, stride=2,
                                        padding=1)
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
                                        kernel_size=4, stride=2,
                                        padding=1, bias=use_bias)
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
                                        kernel_size=4, stride=2,
                                        padding=1, bias=use_bias)
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)

class UnetGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, num_downs, ngf=64,
                 norm_layer=nn.InstanceNorm2d, use_dropout=False):
        super(UnetGenerator, self).__init__()
        
        # Build UNet structure
        unet_block = UnetSkipConnectionBlock(
            ngf * 8, ngf * 8, input_nc=None, submodule=None,
            norm_layer=norm_layer, innermost=True)
        
        for i in range(num_downs - 5):
            unet_block = UnetSkipConnectionBlock(
                ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
                norm_layer=norm_layer, use_dropout=use_dropout)
                
        unet_block = UnetSkipConnectionBlock(
            ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
            norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(
            ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
            norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(
            ngf, ngf * 2, input_nc=None, submodule=unet_block,
            norm_layer=norm_layer)
            
        self.model = UnetSkipConnectionBlock(
            output_nc, ngf, input_nc=input_nc, submodule=unet_block,
            outermost=True, norm_layer=norm_layer)

    def forward(self, input):
        return self.model(input)

class TOM(nn.Module):
    def __init__(self, opt=None):
        super(TOM, self).__init__()
        if opt is None:
            opt = Options()
        
        self.unet = UnetGenerator(
            input_nc=opt.tom_input_nc,
            output_nc=opt.tom_output_nc,
            num_downs=6,
            norm_layer=nn.InstanceNorm2d
        )

    def forward(self, x):
        output = self.unet(x)
        p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
        p_rendered = torch.tanh(p_rendered)
        m_composite = torch.sigmoid(m_composite)
        return p_rendered, m_composite

def save_checkpoint(model, save_path):
    if not os.path.exists(os.path.dirname(save_path)):
        os.makedirs(os.path.dirname(save_path))
    torch.save(model.state_dict(), save_path)

def load_checkpoint(model, checkpoint_path, strict=True):
    if not os.path.exists(checkpoint_path):
        raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
    
    state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    
    # Filter out unexpected keys
    model_state_dict = model.state_dict()
    filtered_state_dict = {k: v for k, v in state_dict.items()
                         if k in model_state_dict and v.size() == model_state_dict[k].size()}
    
    # Load filtered state dict
    model.load_state_dict(filtered_state_dict, strict=strict)
    
    # Print warnings
    missing = [k for k in model_state_dict if k not in state_dict]
    unexpected = [k for k in state_dict if k not in model_state_dict]
    size_mismatch = [k for k in state_dict 
                    if k in model_state_dict and state_dict[k].size() != model_state_dict[k].size()]
    
    if missing:
        print(f"Missing keys: {missing}")
    if unexpected:
        print(f"Unexpected keys: {unexpected}")
    if size_mismatch:
        print(f"Size mismatch: {size_mismatch}")