Spaces:
Running
Running
File size: 14,028 Bytes
9862b96 ce16d6e 9862b96 7335794 5bff76a 7335794 5bff76a 960b661 5bff76a 7335794 5bff76a 7335794 9862b96 5bff76a 9862b96 5bff76a 3ecccc5 9862b96 5bff76a 9862b96 5bff76a 9862b96 5bff76a 3ecccc5 9862b96 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 5bff76a 9862b96 dfd5718 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 5bff76a 7335794 3ecccc5 bfbe0c2 3ecccc5 bfbe0c2 5bff76a bfbe0c2 3ecccc5 bfbe0c2 3ecccc5 bfbe0c2 9862b96 bfbe0c2 5bff76a bfbe0c2 9862b96 5bff76a bfbe0c2 9862b96 3ecccc5 9862b96 3ecccc5 bfbe0c2 3ecccc5 bfbe0c2 3ecccc5 bfbe0c2 3ecccc5 bfbe0c2 5bff76a bfbe0c2 3ecccc5 9862b96 bfbe0c2 5bff76a bfbe0c2 5bff76a bfbe0c2 5bff76a bfbe0c2 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 5bff76a 9862b96 5bff76a 9862b96 3ecccc5 5bff76a 9862b96 5bff76a 9862b96 3ecccc5 9862b96 5bff76a 9862b96 3ecccc5 9862b96 5bff76a 9862b96 3ecccc5 5bff76a 9862b96 5bff76a 3ecccc5 7335794 3ecccc5 7335794 3ecccc5 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 960b661 9862b96 960b661 5bff76a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np
class Options:
def __init__(self):
# Image dimensions
self.fine_height = 256
self.fine_width = 192
# GMM parameters
self.grid_size = 5
self.input_nc = 22 # For extractionA
self.input_nc_B = 1 # For extractionB
# TOM parameters
self.tom_input_nc = 26 # 3(agnostic) + 3(warped) + 1(mask) + 19(features)
self.tom_output_nc = 4 # 3(rendered) + 1(composite mask)
# Training settings
self.use_dropout = False
self.norm_layer = nn.BatchNorm2d
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print(f'initialization method [{init_type}]')
net.apply(weights_init_normal)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
super(FeatureExtraction, self).__init__()
# Build feature extraction layers
layers = [
nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1),
nn.ReLU(True),
norm_layer(ngf)
]
for i in range(n_layers):
in_channels = min(2**i * ngf, 512)
out_channels = min(2**(i+1) * ngf, 512)
layers += [
nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1),
nn.ReLU(True),
norm_layer(out_channels)
]
# Final processing blocks
layers += [
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
norm_layer(512),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(True)
]
self.model = nn.Sequential(*layers)
init_weights(self.model)
def forward(self, x):
return self.model(x)
class FeatureL2Norm(nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b, c, h, w = feature_A.size()
feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
feature_mul = torch.bmm(feature_B, feature_A)
return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512, output_dim=6):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.conv(x)
x = x.contiguous().view(x.size(0), -1)
x = self.linear(x)
return self.tanh(x)
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, grid_size=5):
super(TpsGridGen, self).__init__()
self.out_h = out_h
self.out_w = out_w
self.grid_size = grid_size
self.N = grid_size * grid_size
# Create regular grid of control points
axis_coords = np.linspace(-1, 1, grid_size)
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = torch.FloatTensor(P_X.reshape(-1, 1)) # (N,1)
P_Y = torch.FloatTensor(P_Y.reshape(-1, 1)) # (N,1)
self.register_buffer('P_X', P_X)
self.register_buffer('P_Y', P_Y)
# Compute inverse matrix L^-1
self.register_buffer('Li', self.compute_L_inverse(P_X, P_Y))
# Create sampling grid
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
self.register_buffer('grid_X', torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3)) # (1,H,W,1)
self.register_buffer('grid_Y', torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3)) # (1,H,W,1)
def compute_L_inverse(self, X, Y):
N = X.size(0)
Xmat = X.expand(N, N)
Ymat = Y.expand(N, N)
P_dist_squared = torch.pow(Xmat - Xmat.transpose(0, 1), 2) + torch.pow(Ymat - Ymat.transpose(0, 1), 2)
P_dist_squared[P_dist_squared == 0] = 1 # Avoid log(0)
K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
# Construct L matrix
O = torch.FloatTensor(N, 1).fill_(1)
Z = torch.FloatTensor(3, 3).fill_(0)
P = torch.cat((O, X, Y), 1)
L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
return torch.inverse(L)
def forward(self, theta):
batch_size = theta.size(0)
device = theta.device
# Split theta into x and y components
Q_X = theta[:, :self.N].contiguous().view(batch_size, self.N, 1)
Q_Y = theta[:, self.N:].contiguous().view(batch_size, self.N, 1)
Q_X = Q_X + self.P_X.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y.expand_as(Q_Y)
# Compute weights
W_X = torch.bmm(self.Li[:, :self.N, :self.N].expand(batch_size, -1, -1), Q_X)
W_Y = torch.bmm(self.Li[:, :self.N, :self.N].expand(batch_size, -1, -1), Q_Y)
# Repeat grid for batch processing
grid_X = self.grid_X.expand(batch_size, -1, -1, -1).to(device)
grid_Y = self.grid_Y.expand(batch_size, -1, -1, -1).to(device)
# Compute transformed coordinates
points_X = self.transform_points(grid_X, W_X, Q_X)
points_Y = self.transform_points(grid_Y, W_Y, Q_Y)
return torch.cat((points_X, points_Y), 3)
def transform_points(self, grid, W, Q):
batch_size, h, w, _ = grid.size()
# Compute distance between grid points and control points
grid_flat = grid.view(batch_size, -1, 1)
P = torch.cat([self.P_X, self.P_Y], 1).unsqueeze(0).expand(batch_size, -1, -1).to(grid.device)
delta = grid_flat - P
# Compute U (radial basis function)
dist_squared = torch.sum(torch.pow(delta, 2), 2, keepdim=True)
dist_squared[dist_squared == 0] = 1 # Avoid log(0)
U = torch.mul(dist_squared, torch.log(dist_squared))
# Compute affine + non-affine transformation
A = torch.cat([
torch.ones(batch_size, h*w, 1, device=grid.device),
grid_flat[:, :, 0:1],
grid_flat[:, :, 1:2]
], 2)
points = torch.bmm(A, Q.view(batch_size, 3, -1)) + torch.bmm(U, W.view(batch_size, self.N, -1))
return points.view(batch_size, h, w, 1)
class GMM(nn.Module):
def __init__(self, opt=None):
super(GMM, self).__init__()
if opt is None:
opt = Options()
self.extractionA = FeatureExtraction(opt.input_nc)
self.extractionB = FeatureExtraction(opt.input_nc_B)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False,
norm_layer=nn.InstanceNorm2d, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.InstanceNorm2d, use_dropout=False):
super(UnetGenerator, self).__init__()
# Build UNet structure
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None,
norm_layer=norm_layer, innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(
ngf, ngf * 2, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block,
outermost=True, norm_layer=norm_layer)
def forward(self, input):
return self.model(input)
class TOM(nn.Module):
def __init__(self, opt=None):
super(TOM, self).__init__()
if opt is None:
opt = Options()
self.unet = UnetGenerator(
input_nc=opt.tom_input_nc,
output_nc=opt.tom_output_nc,
num_downs=6,
norm_layer=nn.InstanceNorm2d
)
def forward(self, x):
output = self.unet(x)
p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
return p_rendered, m_composite
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
def load_checkpoint(model, checkpoint_path, strict=True):
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
# Filter out unexpected keys
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items()
if k in model_state_dict and v.size() == model_state_dict[k].size()}
# Load filtered state dict
model.load_state_dict(filtered_state_dict, strict=strict)
# Print warnings
missing = [k for k in model_state_dict if k not in state_dict]
unexpected = [k for k in state_dict if k not in model_state_dict]
size_mismatch = [k for k in state_dict
if k in model_state_dict and state_dict[k].size() != model_state_dict[k].size()]
if missing:
print(f"Missing keys: {missing}")
if unexpected:
print(f"Unexpected keys: {unexpected}")
if size_mismatch:
print(f"Size mismatch: {size_mismatch}") |