Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch.nn as nn
|
4 |
-
from torchvision import transforms
|
5 |
-
from PIL import Image
|
6 |
import numpy as np
|
|
|
7 |
import requests
|
8 |
-
from
|
9 |
-
|
10 |
-
# U-2-Net architecture (simplified, or import from a .py file if you've saved it)
|
11 |
-
# You can get the U-2-Net code from https://github.com/xuebinqin/U-2-Net
|
12 |
-
|
13 |
-
# For demo, let's download the pre-trained model and use a wrapper instead
|
14 |
-
from huggingface_hub import hf_hub_download
|
15 |
-
|
16 |
-
# Download u2net.pth from HuggingFace Hub
|
17 |
-
model_path = hf_hub_download(repo_id="BritishWerewolf/U-2-Net", filename="onnx/model.onnx")
|
18 |
-
|
19 |
-
# Use a known U2NET implementation (e.g., from https://github.com/xuebinqin/U-2-Net/blob/master/u2net_test.py)
|
20 |
-
from u2net import U2NET # Assume you copied the model code as u2net.py
|
21 |
|
22 |
-
# Load model
|
23 |
-
|
24 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'), weights_only=False))
|
25 |
-
model.eval()
|
26 |
|
27 |
-
# Preprocessing
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
|
|
35 |
def segment_dress(image):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
with torch.no_grad():
|
40 |
-
d1, _, _, _, _, _, _ = model(input_tensor)
|
41 |
-
pred = d1[0][0]
|
42 |
-
pred = (pred - pred.min()) / (pred.max() - pred.min())
|
43 |
-
pred_np = pred.cpu().numpy()
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
image_np = np.array(
|
51 |
-
|
|
|
52 |
|
53 |
-
return Image.fromarray(
|
54 |
|
55 |
-
#
|
56 |
gr.Interface(
|
57 |
fn=segment_dress,
|
58 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
59 |
outputs=gr.Image(type="pil", label="Segmented Dress"),
|
60 |
-
title="
|
61 |
-
description="
|
62 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import onnxruntime as ort
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
import requests
|
6 |
+
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load ONNX model
|
9 |
+
ort_session = ort.InferenceSession("model.onnx") # Ensure model.onnx is in your app folder
|
|
|
|
|
10 |
|
11 |
+
# Preprocessing function
|
12 |
+
def preprocess(image):
|
13 |
+
image = image.resize((320, 320)).convert("RGB")
|
14 |
+
image_np = np.array(image).astype(np.float32) / 255.0
|
15 |
+
image_np = image_np.transpose(2, 0, 1) # HWC -> CHW
|
16 |
+
image_np = np.expand_dims(image_np, axis=0) # Add batch dimension
|
17 |
+
return image_np
|
18 |
|
19 |
+
# Inference + Postprocessing
|
20 |
def segment_dress(image):
|
21 |
+
input_tensor = preprocess(image)
|
22 |
+
inputs = {ort_session.get_inputs()[0].name: input_tensor}
|
23 |
+
outputs = ort_session.run(None, inputs)
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
pred = outputs[0][0][0]
|
26 |
+
pred = (pred - pred.min()) / (pred.max() - pred.min())
|
27 |
+
pred_img = Image.fromarray((pred * 255).astype(np.uint8)).resize(image.size)
|
28 |
+
|
29 |
+
# Apply mask to image
|
30 |
+
image_np = np.array(image.convert("RGB"))
|
31 |
+
mask = np.array(pred_img).astype(np.float32) / 255.0
|
32 |
+
masked = (image_np * mask[..., None]).astype(np.uint8)
|
33 |
|
34 |
+
return Image.fromarray(masked)
|
35 |
|
36 |
+
# Gradio app
|
37 |
gr.Interface(
|
38 |
fn=segment_dress,
|
39 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
40 |
outputs=gr.Image(type="pil", label="Segmented Dress"),
|
41 |
+
title="U-2-Net Dress Segmentation (ONNX)",
|
42 |
+
description="Upload an image to segment foreground using U-2-Net ONNX model"
|
43 |
).launch()
|