Spaces:
Sleeping
Sleeping
File size: 6,505 Bytes
e4638d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image
import matplotlib.pyplot as plt
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Function to apply FFT and return an image
def apply_fft(image: Image.Image):
# Convert the image to grayscale for FFT (can be extended for color images too)
image_gray = image.convert("L")
# Convert the image to numpy array
image_array = np.array(image_gray)
# Apply 2D FFT
fft_image = np.fft.fft2(image_array)
fft_shifted = np.fft.fftshift(fft_image) # Shift the zero frequency to the center
# Magnitude spectrum for visualization
magnitude_spectrum = 20 * np.log(np.abs(fft_shifted))
# Normalize magnitude spectrum to 0-255 for visualization
magnitude_spectrum = np.interp(magnitude_spectrum, (magnitude_spectrum.min(), magnitude_spectrum.max()), (0, 255))
# Convert back to image
fft_image_pil = Image.fromarray(magnitude_spectrum.astype(np.uint8))
return fft_image_pil
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate the image using the diffusion pipeline
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Apply FFT post-processing to the generated image
fft_image = apply_fft(image)
return fft_image
examples = [
"red, t-shirt, yellow stripes",
"blue, hoodie, minimalist",
"red, sweat shirt, geometric design",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template with FFT Post-Processing
Currently running on {power_device}.
""")
with gr.Row():
prompt_part1 = gr.Textbox(
value="a single",
label="Prompt Part 1",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part1",
visible=False,
)
prompt_part2 = gr.Textbox(
label="color",
show_label=False,
max_lines=1,
placeholder="color (e.g., color category)",
container=False,
)
prompt_part3 = gr.Textbox(
label="dress_type",
show_label=False,
max_lines=1,
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
container=False,
)
prompt_part4 = gr.Textbox(
label="design",
show_label=False,
max_lines=1,
placeholder="design",
container=False,
)
prompt_part5 = gr.Textbox(
value="hanging on the plain wall",
label="Prompt Part 5",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part5",
visible=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt_part2]
)
run_button.click(
fn=infer,
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|