gaur3009 commited on
Commit
ab9881b
·
verified ·
1 Parent(s): a0d9352

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import BlipProcessor, BlipForConditionalGeneration
3
+ from PIL import Image
4
+ import torch
5
+
6
+ # Load the BLIP model and processor
7
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
8
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
9
+
10
+ def generate_caption(image):
11
+ image = image.convert("RGB")
12
+ inputs = processor(images=image, return_tensors="pt")
13
+ with torch.no_grad():
14
+ output = model.generate(**inputs)
15
+ caption = processor.decode(output[0], skip_special_tokens=True)
16
+ return caption
17
+
18
+ # Gradio interface
19
+ interface = gr.Interface(
20
+ fn=generate_caption,
21
+ inputs=gr.Image(type="pil", label="Upload an Image"),
22
+ outputs=gr.Textbox(label="Generated Caption"),
23
+ title="📸 BLIP Image Captioning",
24
+ description="Upload an image and get a descriptive caption using the BLIP model.",
25
+ allow_flagging="never"
26
+ )
27
+
28
+ if __name__ == "__main__":
29
+ interface.launch()