File size: 7,401 Bytes
80552c3 6574244 14505b3 80552c3 14505b3 80552c3 14505b3 6574244 80552c3 6574244 14505b3 6574244 14505b3 6574244 14505b3 6574244 80552c3 6574244 14505b3 80552c3 14505b3 6574244 80552c3 14505b3 6574244 14505b3 6574244 14505b3 6574244 14505b3 6574244 14505b3 6574244 14505b3 6574244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# app.py (Gradio UI with SpeechRecognition)
import gradio as gr
import threading
import queue
import time
from datetime import datetime
from analyzer import MeetingAnalyzer
from integrations import Notifier
import config
class MeetingProcessor:
def __init__(self):
self.recognizer = None
self.stop_listening = None
self.analyzer = MeetingAnalyzer()
self.notifier = Notifier()
self.running = False
self.start_time = None
self.transcript_history = []
self.summary = ""
self.action_items = []
self.urgent_alerts = []
self.transcript_queue = queue.Queue()
def start_processing(self):
if self.running:
return "Already running!"
self.running = True
self.start_time = time.time()
self.transcript_history = []
self.summary = ""
self.action_items = []
self.urgent_alerts = []
# Start processing threads
threading.Thread(target=self._audio_capture_thread, daemon=True).start()
threading.Thread(target=self._analysis_thread, daemon=True).start()
return "Meeting processing started! 🎤"
def _audio_capture_thread(self):
import speech_recognition as sr
self.recognizer = sr.Recognizer()
self.recognizer.energy_threshold = config.ENERGY_THRESHOLD
self.recognizer.dynamic_energy_threshold = config.DYNAMIC_ENERGY_THRESHOLD
self.recognizer.pause_threshold = config.PAUSE_THRESHOLD
with sr.Microphone() as source:
self.recognizer.adjust_for_ambient_noise(source)
def callback(recognizer, audio):
try:
text = recognizer.recognize_google(audio)
self.transcript_queue.put(text)
except sr.UnknownValueError:
pass
except sr.RequestError as e:
print(f"Speech recognition error: {str(e)}")
self.stop_listening = self.recognizer.listen_in_background(
source,
callback,
phrase_time_limit=config.PHRASE_TIME_LIMIT
)
# Keep the thread running while processing
while self.running:
time.sleep(0.1)
def _analysis_thread(self):
while self.running:
try:
transcript = self.transcript_queue.get(timeout=1.0)
if transcript:
self.transcript_history.append(transcript)
self.analyzer.process_chunk(transcript)
# Check for urgent items periodically
if len(self.transcript_history) % 5 == 0:
urgent_items = self.analyzer.detect_urgent_action_items()
if urgent_items:
self.urgent_alerts.extend(urgent_items)
self.notifier.send_urgent_alert(urgent_items)
except queue.Empty:
continue
def stop_processing(self):
if not self.running:
return "Not running!"
self.running = False
if self.stop_listening:
self.stop_listening(wait_for_stop=False)
# Generate final analysis
self.summary = self.analyzer.generate_summary()
self.action_items = self.analyzer.extract_action_items()
# Send final report
self.notifier.send_comprehensive_report(
summary=self.summary,
action_items=self.action_items,
decisions=self.analyzer.extract_decisions(),
transcript="\n".join(self.transcript_history),
recipients=config.NOTIFICATION_RECIPIENTS
)
return "Meeting processing stopped! Report sent. ✅"
def get_current_status(self):
if not self.running:
return {
"status": "Stopped",
"duration": "00:00",
"transcript": "",
"summary": self.summary,
"action_items": self.action_items,
"alerts": self.urgent_alerts
}
elapsed = time.time() - self.start_time
mins, secs = divmod(int(elapsed), 60)
# Only show last 5 transcript entries
recent_transcript = "\n".join(self.transcript_history[-5:])
return {
"status": "Recording",
"duration": f"{mins:02d}:{secs:02d}",
"transcript": recent_transcript,
"summary": self.summary if self.summary else "Summary will appear after meeting ends",
"action_items": self.action_items,
"alerts": self.urgent_alerts
}
# Initialize processor
processor = MeetingProcessor()
# Create Gradio interface
with gr.Blocks(title="Real-Time Meeting Summarizer", theme="soft") as app:
gr.Markdown("# 🎙️ Real-Time Meeting Summarizer")
gr.Markdown("Start this during any meeting to get live transcription and automatic summaries")
with gr.Row():
start_btn = gr.Button("Start Meeting", variant="primary")
stop_btn = gr.Button("Stop Meeting", variant="stop")
status_text = gr.Textbox(label="Status", interactive=False)
with gr.Row():
with gr.Column():
duration_display = gr.Textbox(label="Duration", interactive=False)
transcript_box = gr.Textbox(label="Live Transcript", lines=8, interactive=False)
with gr.Column():
alerts_box = gr.Textbox(label="Urgent Alerts", lines=3, interactive=False)
summary_box = gr.Textbox(label="Meeting Summary", lines=5, interactive=False)
action_items_box = gr.Textbox(label="Action Items", lines=5, interactive=False)
# State for live updates
state = gr.State(value=processor.get_current_status())
# Update function for live components
def update_components():
current_status = processor.get_current_status()
return {
duration_display: current_status["duration"],
transcript_box: current_status["transcript"],
summary_box: current_status["summary"],
action_items_box: "\n".join(
f"• {item['task']} (Owner: {item['owner']}, Deadline: {item['deadline']})"
for item in current_status["action_items"]
),
alerts_box: "\n".join(
f"🚨 {item['task']} (Owner: {item['owner']}, Deadline: {item['deadline']})"
for item in current_status["alerts"]
) if current_status["alerts"] else "No urgent alerts",
state: current_status
}
# Button actions
start_btn.click(
fn=processor.start_processing,
inputs=[],
outputs=[status_text]
)
stop_btn.click(
fn=processor.stop_processing,
inputs=[],
outputs=[status_text]
)
# Live updates
app.load(update_components, inputs=[state], outputs=[
duration_display,
transcript_box,
summary_box,
action_items_box,
alerts_box,
state
], every=1)
if __name__ == "__main__":
app.launch() |