File size: 10,969 Bytes
a925f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import numpy as np
import time
import math
import random
import torch

from diffusers import AutoPipelineForImage2Image
from PIL import Image, ImageFilter

max_64_bit_int = 2**63 - 1

# Automatic device detection
if torch.cuda.is_available():
    device = "cuda"
    floatType = torch.float16
    variant = "fp16"
else:
    device = "cpu"
    floatType = torch.float32
    variant = None

pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)

def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed

def toggle_debug(is_debug_mode):
    return [gr.update(visible = is_debug_mode)]

def check(
    source_img,
    prompt,
    negative_prompt,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    denoising_steps,
    seed,
    is_randomize_seed,
    debug_mode,
    progress = gr.Progress()
):
    if source_img is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

def redraw(
    source_img,
    prompt,
    negative_prompt,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    denoising_steps,
    is_randomize_seed,
    seed,
    debug_mode,
    progress = gr.Progress()
):
    check(
        source_img,
        prompt,
        negative_prompt,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        is_randomize_seed,
        seed,
        debug_mode
    )
    start = time.time()
    progress(0, desc = "Preparing data...")

    if negative_prompt is None:
        negative_prompt = ""

    if num_inference_steps is None:
        num_inference_steps = 25

    if guidance_scale is None:
        guidance_scale = 7

    if image_guidance_scale is None:
        image_guidance_scale = 1.1

    if strength is None:
        strength = 0.5

    if denoising_steps is None:
        denoising_steps = 1000

    if seed is None:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    torch.manual_seed(seed)

    input_image = source_img.convert("RGB")

    original_height, original_width, original_channel = np.array(input_image).shape
    output_width = original_width
    output_height = original_height

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        process_width = math.floor(output_width * factor)
        process_height = math.floor(output_height * factor)

        limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
    else:
        process_width = output_width
        process_height = output_height

        limitation = "";

    # Width and height must be multiple of 8
    if (process_width % 8) != 0 or (process_height % 8) != 0:
        if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8) + 8
        elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8)
        elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8) + 8
        else:
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8)

    progress(None, desc = "Processing...")
    output_image = pipe(
        seeds = [seed],
        width = process_width,
        height = process_height,
        prompt = prompt,
        negative_prompt = negative_prompt,
        image = input_image,
        num_inference_steps = num_inference_steps,
        guidance_scale = guidance_scale,
        image_guidance_scale = image_guidance_scale,
        strength = strength,
        denoising_steps = denoising_steps,
        show_progress_bar = True
    ).images[0]

    if limitation != "":
        output_image = output_image.resize((output_width, output_height))

    if debug_mode == False:
        input_image = None

    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    return [
        output_image,
        ("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
        input_image
    ]

with gr.Blocks() as interface:
    with gr.Column():
        source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
        prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see", lines = 2)
        strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt")
        with gr.Accordion("Advanced options", open = False):
             negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see", value = "Ugly, malformed, noise, blur, watermark")
             num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
             guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
             image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
             denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
             randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
             seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
             debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")

        submit = gr.Button("πŸš€ Redraw", variant = "primary")

        redrawn_image = gr.Image(label = "Redrawn image")
        information = gr.HTML()
        original_image = gr.Image(label = "Original image", visible = False)

    submit.click(update_seed, inputs = [
        randomize_seed,
        seed
    ], outputs = [
        seed
    ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
        original_image
    ], queue = False, show_progress = False).then(check, inputs = [
        source_img,
        prompt,
        negative_prompt,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [], queue = False, show_progress = False).success(redraw, inputs = [
        source_img,
        prompt,
        negative_prompt,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        denoising_steps,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [
        redrawn_image,
        information,
        original_image
    ], scroll_to_output = True)

    gr.Examples(
        run_on_click = True,
        fn = redraw,
	    inputs = [
            source_img,
            prompt,
            negative_prompt,
            num_inference_steps,
            guidance_scale,
            image_guidance_scale,
            strength,
            denoising_steps,
            randomize_seed,
            seed,
            debug_mode
        ],
	    outputs = [
            redrawn_image,
            information,
            original_image
        ],
        examples = [
                [
                    "./Examples/Example1.png",
                    "Drawn image, line art, illustration, picture",
                    "3d, photo, realistic, noise, blur, watermark",
                    25,
                    7,
                    1.1,
                    0.6,
                    1000,
                    False,
                    42,
                    False
                ],
            ],
        cache_examples = False,
    )
    
    gr.Markdown(
        """
        ## How to prompt your image
        To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
        ```
        A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
        ```
        You can use round brackets to increase the importance of a part:
        ```
        A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
        ```
        You can use several levels of round brackets to even more increase the importance of a part:
        ```
        A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
        ```
        You can use number instead of several round brackets:
        ```
        A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
        ```
        You can do the same thing with square brackets to decrease the importance of a part:
        ```
        A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
        ```
        To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
        ```
        man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
        ```
        """
    )

    interface.queue().launch()