|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from huggingface_hub import snapshot_download |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers import Phi3Config, Phi3Model |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Phi3Transformer(Phi3Model): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`] |
|
We only modified the attention mask |
|
Args: |
|
config: Phi3Config |
|
""" |
|
def prefetch_layer(self, layer_idx: int, device: torch.device): |
|
"Starts prefetching the next layer cache" |
|
with torch.cuda.stream(self.prefetch_stream): |
|
|
|
for name, param in self.layers[layer_idx].named_parameters(): |
|
param.data = param.data.to(device, non_blocking=True) |
|
|
|
def evict_previous_layer(self, layer_idx: int): |
|
"Moves the previous layer cache to the CPU" |
|
prev_layer_idx = layer_idx - 1 |
|
for name, param in self.layers[prev_layer_idx].named_parameters(): |
|
param.data = param.data.to("cpu", non_blocking=True) |
|
|
|
def get_offlaod_layer(self, layer_idx: int, device: torch.device): |
|
|
|
if not hasattr(self, "prefetch_stream"): |
|
self.prefetch_stream = torch.cuda.Stream() |
|
|
|
|
|
torch.cuda.current_stream().synchronize() |
|
self.evict_previous_layer(layer_idx) |
|
|
|
|
|
torch.cuda.synchronize(self.prefetch_stream) |
|
|
|
|
|
self.prefetch_layer((layer_idx + 1) % len(self.layers), device) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
offload_model: Optional[bool] = False, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
return_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, Cache): |
|
return_legacy_cache = True |
|
if past_key_values is None: |
|
past_key_values = DynamicCache() |
|
else: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " |
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " |
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.dim() == 3: |
|
dtype = inputs_embeds.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
attention_mask = (1 - attention_mask) * min_dtype |
|
attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype) |
|
else: |
|
raise |
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
layer_idx = -1 |
|
for decoder_layer in self.layers: |
|
layer_idx += 1 |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
if offload_model and not self.training: |
|
self.get_offlaod_layer(layer_idx, device=inputs_embeds.device) |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
print('************') |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if return_legacy_cache: |
|
next_cache = next_cache.to_legacy_cache() |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|