Update src/streamlit_app.py
Browse files- src/streamlit_app.py +73 -131
src/streamlit_app.py
CHANGED
@@ -1,141 +1,83 @@
|
|
1 |
import streamlit as st
|
2 |
-
import re
|
3 |
-
import random
|
4 |
import PyPDF2
|
5 |
-
import
|
6 |
-
from
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
import torch
|
10 |
-
from transformers import AutoTokenizer, AutoModel
|
11 |
-
|
12 |
-
# ---------------------
|
13 |
-
# Tokenization
|
14 |
-
# ---------------------
|
15 |
-
def tokenize(text):
|
16 |
-
return re.findall(r"\w+", text.lower())
|
17 |
-
|
18 |
-
# ---------------------
|
19 |
-
# PDF QA System
|
20 |
-
# ---------------------
|
21 |
-
class PDFQASystem:
|
22 |
-
def __init__(self):
|
23 |
-
self.text_chunks = []
|
24 |
-
self.embeddings = None
|
25 |
-
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
26 |
-
self.model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
27 |
-
self.model.eval()
|
28 |
-
self.active_document = None
|
29 |
-
|
30 |
-
def process_pdf_stream(self, uploaded_file):
|
31 |
-
text = self._extract_pdf_text(uploaded_file)
|
32 |
-
self.text_chunks = self._chunk_text(text)
|
33 |
-
self.embeddings = self._embed(self.text_chunks)
|
34 |
-
self.active_document = uploaded_file.name
|
35 |
-
|
36 |
-
def _extract_pdf_text(self, uploaded_file):
|
37 |
-
text = ""
|
38 |
-
reader = PyPDF2.PdfReader(uploaded_file)
|
39 |
-
for page in reader.pages:
|
40 |
-
page_text = page.extract_text()
|
41 |
-
if page_text:
|
42 |
-
text += page_text
|
43 |
-
return text
|
44 |
-
|
45 |
-
def _chunk_text(self, text, chunk_size=500):
|
46 |
-
words = text.split()
|
47 |
-
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
48 |
-
|
49 |
-
def _mean_pooling(self, model_output, attention_mask):
|
50 |
-
token_embeddings = model_output.last_hidden_state
|
51 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
52 |
-
return torch.sum(token_embeddings * input_mask_expanded, dim=1) / torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
53 |
-
|
54 |
-
def _embed(self, texts):
|
55 |
-
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
56 |
-
with torch.no_grad():
|
57 |
-
model_output = self.model(**inputs)
|
58 |
-
embeddings = self._mean_pooling(model_output, inputs['attention_mask'])
|
59 |
-
return torch.nn.functional.normalize(embeddings, p=2, dim=1).cpu().numpy()
|
60 |
-
|
61 |
-
def answer_question(self, question):
|
62 |
-
if not self.active_document:
|
63 |
-
return "No document loaded. Please upload a PDF first."
|
64 |
-
|
65 |
-
question_embedding = self._embed([question])[0]
|
66 |
-
similarities = cosine_similarity([question_embedding], self.embeddings)[0]
|
67 |
-
best_match_idx = np.argmax(similarities)
|
68 |
-
return self.text_chunks[best_match_idx]
|
69 |
-
|
70 |
-
# ---------------------
|
71 |
-
# Intent Classifier
|
72 |
-
# ---------------------
|
73 |
-
class IntentClassifier:
|
74 |
-
def __init__(self):
|
75 |
-
self.intents = {
|
76 |
-
"greet": ["hello", "hi", "hey"],
|
77 |
-
"bye": ["bye", "goodbye", "exit"],
|
78 |
-
"qa": ["what", "when", "how", "explain", "tell", "who", "why"],
|
79 |
-
"help": ["help", "support", "assist"]
|
80 |
-
}
|
81 |
-
|
82 |
-
def predict(self, tokens):
|
83 |
-
scores = defaultdict(int)
|
84 |
-
for token in tokens:
|
85 |
-
for intent, keywords in self.intents.items():
|
86 |
-
if token in keywords:
|
87 |
-
scores[intent] += 1
|
88 |
-
return max(scores, key=scores.get) if scores else "qa"
|
89 |
-
|
90 |
-
# ---------------------
|
91 |
-
# AI Agent Core
|
92 |
-
# ---------------------
|
93 |
-
class DocumentAI:
|
94 |
-
def __init__(self):
|
95 |
-
self.intent_recognizer = IntentClassifier()
|
96 |
-
self.qa_system = PDFQASystem()
|
97 |
-
self.responses = {
|
98 |
-
"greet": ["π Hello! I'm your document assistant.", "Hi there! Ready to answer your document questions."],
|
99 |
-
"bye": ["Goodbye!", "See you later!", "Thanks for using the assistant!"],
|
100 |
-
"help": "Upload a PDF and ask questions. Iβll answer from its content!",
|
101 |
-
"no_doc": "Please upload a PDF document first."
|
102 |
-
}
|
103 |
-
|
104 |
-
def handle_query(self, text):
|
105 |
-
tokens = tokenize(text)
|
106 |
-
intent = self.intent_recognizer.predict(tokens)
|
107 |
-
|
108 |
-
if intent == "greet":
|
109 |
-
return random.choice(self.responses["greet"])
|
110 |
-
elif intent == "bye":
|
111 |
-
return random.choice(self.responses["bye"])
|
112 |
-
elif intent == "help":
|
113 |
-
return self.responses["help"]
|
114 |
-
elif intent == "qa":
|
115 |
-
if self.qa_system.active_document:
|
116 |
-
return self.qa_system.answer_question(text)
|
117 |
-
else:
|
118 |
-
return self.responses["no_doc"]
|
119 |
-
else:
|
120 |
-
return "π€ Iβm not sure how to respond. Try saying 'help'."
|
121 |
-
|
122 |
-
# ---------------------
|
123 |
# Streamlit UI
|
124 |
-
|
125 |
-
st.
|
126 |
-
st.
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
ai.qa_system.process_pdf_stream(uploaded_file)
|
135 |
-
st.success(f"β
PDF '{uploaded_file.name}' processed successfully!")
|
136 |
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
st.markdown(f"**π§ Answer:** {answer}")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import PyPDF2
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import numpy as np
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
# Load local models once
|
10 |
+
@st.cache_resource
|
11 |
+
def load_models():
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
13 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
14 |
+
qa_pipeline_model = pipeline("text2text-generation", model="google/flan-t5-base")
|
15 |
+
return tokenizer, model, qa_pipeline_model
|
16 |
+
|
17 |
+
embedding_tokenizer, embedding_model, qa_pipeline_model = load_models()
|
18 |
+
|
19 |
+
# PDF loader
|
20 |
+
def load_pdf(file):
|
21 |
+
reader = PyPDF2.PdfReader(file)
|
22 |
+
text = ''
|
23 |
+
for page in reader.pages:
|
24 |
+
text += page.extract_text() or ''
|
25 |
+
return text
|
26 |
+
|
27 |
+
# Embed text
|
28 |
+
def get_embedding(text):
|
29 |
+
inputs = embedding_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
30 |
+
with torch.no_grad():
|
31 |
+
model_output = embedding_model(**inputs)
|
32 |
+
return model_output.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
33 |
+
|
34 |
+
# Store vectors in-memory
|
35 |
+
vector_store = []
|
36 |
+
|
37 |
+
def upload_document_chunks(chunks):
|
38 |
+
vector_store.clear()
|
39 |
+
for chunk in chunks:
|
40 |
+
embedding = get_embedding(chunk)
|
41 |
+
vector_store.append((chunk, embedding))
|
42 |
+
|
43 |
+
def query_answer(query):
|
44 |
+
query_vec = get_embedding(query)
|
45 |
+
similarities = [cosine_similarity([query_vec], [vec])[0][0] for _, vec in vector_store]
|
46 |
+
top_indices = np.argsort(similarities)[-3:][::-1]
|
47 |
+
return [vector_store[i][0] for i in top_indices]
|
48 |
+
|
49 |
+
def generate_response(context, query):
|
50 |
+
prompt = f"Context: {context}\n\nQuestion: {query}\nAnswer:"
|
51 |
+
response = qa_pipeline_model(prompt, max_new_tokens=100, do_sample=True)
|
52 |
+
return response[0]['generated_text'].strip()
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Streamlit UI
|
55 |
+
st.set_page_config(page_title="Offline PDF QA Bot", layout="centered")
|
56 |
+
st.title("π Offline PDF QA Bot π")
|
57 |
+
st.markdown(
|
58 |
+
"Upload a PDF document, ask a question, and get an answer using **only local models** β no external APIs involved."
|
59 |
+
)
|
60 |
+
|
61 |
+
uploaded_file = st.file_uploader("π Upload PDF", type="pdf")
|
62 |
+
user_query = st.text_input("β Ask a question based on the document")
|
63 |
+
|
64 |
+
if uploaded_file and user_query:
|
65 |
+
with st.spinner("Processing..."):
|
66 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
67 |
+
tmp_file.write(uploaded_file.read())
|
68 |
+
document_text = load_pdf(tmp_file.name)
|
69 |
|
70 |
+
document_chunks = [document_text[i:i + 500] for i in range(0, len(document_text), 500)]
|
71 |
|
72 |
+
upload_document_chunks(document_chunks)
|
73 |
+
top_chunks = query_answer(user_query)
|
74 |
+
context = " ".join(top_chunks)
|
75 |
|
76 |
+
answer = generate_response(context, user_query)
|
|
|
|
|
77 |
|
78 |
+
st.subheader("π Retrieved Document Segments")
|
79 |
+
for i, chunk in enumerate(top_chunks, 1):
|
80 |
+
st.markdown(f"**Chunk {i}:** {chunk}")
|
81 |
|
82 |
+
st.subheader("π¬ Answer")
|
83 |
+
st.success(answer)
|
|