Update src/streamlit_app.py
Browse files- src/streamlit_app.py +123 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,125 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import re
|
3 |
+
import random
|
4 |
+
import PyPDF2
|
5 |
+
import numpy as np
|
6 |
+
from collections import defaultdict, deque
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# ---------------------
|
11 |
+
# Tokenization
|
12 |
+
# ---------------------
|
13 |
+
def tokenize(text):
|
14 |
+
return re.findall(r"\w+", text.lower())
|
15 |
+
|
16 |
+
# ---------------------
|
17 |
+
# PDF QA System
|
18 |
+
# ---------------------
|
19 |
+
class PDFQASystem:
|
20 |
+
def __init__(self):
|
21 |
+
self.text_chunks = []
|
22 |
+
self.embeddings = None
|
23 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
24 |
+
self.active_document = None
|
25 |
+
|
26 |
+
def process_pdf_stream(self, uploaded_file):
|
27 |
+
text = self._extract_pdf_text(uploaded_file)
|
28 |
+
self.text_chunks = self._chunk_text(text)
|
29 |
+
self.embeddings = self.model.encode(self.text_chunks)
|
30 |
+
self.active_document = uploaded_file.name
|
31 |
+
|
32 |
+
def _extract_pdf_text(self, uploaded_file):
|
33 |
+
text = ""
|
34 |
+
reader = PyPDF2.PdfReader(uploaded_file)
|
35 |
+
for page in reader.pages:
|
36 |
+
page_text = page.extract_text()
|
37 |
+
if page_text:
|
38 |
+
text += page_text
|
39 |
+
return text
|
40 |
+
|
41 |
+
def _chunk_text(self, text, chunk_size=500):
|
42 |
+
words = text.split()
|
43 |
+
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
44 |
+
|
45 |
+
def answer_question(self, question):
|
46 |
+
if not self.active_document:
|
47 |
+
return "No document loaded. Please upload a PDF first."
|
48 |
+
|
49 |
+
question_embedding = self.model.encode(question)
|
50 |
+
similarities = cosine_similarity([question_embedding], self.embeddings)[0]
|
51 |
+
best_match_idx = np.argmax(similarities)
|
52 |
+
return self.text_chunks[best_match_idx]
|
53 |
+
|
54 |
+
# ---------------------
|
55 |
+
# Intent Classifier
|
56 |
+
# ---------------------
|
57 |
+
class IntentClassifier:
|
58 |
+
def __init__(self):
|
59 |
+
self.intents = {
|
60 |
+
"greet": ["hello", "hi", "hey"],
|
61 |
+
"bye": ["bye", "goodbye", "exit"],
|
62 |
+
"qa": ["what", "when", "how", "explain", "tell", "who", "why"],
|
63 |
+
"help": ["help", "support", "assist"]
|
64 |
+
}
|
65 |
+
|
66 |
+
def predict(self, tokens):
|
67 |
+
scores = defaultdict(int)
|
68 |
+
for token in tokens:
|
69 |
+
for intent, keywords in self.intents.items():
|
70 |
+
if token in keywords:
|
71 |
+
scores[intent] += 1
|
72 |
+
return max(scores, key=scores.get) if scores else "qa"
|
73 |
+
|
74 |
+
# ---------------------
|
75 |
+
# AI Agent Core
|
76 |
+
# ---------------------
|
77 |
+
class DocumentAI:
|
78 |
+
def __init__(self):
|
79 |
+
self.intent_recognizer = IntentClassifier()
|
80 |
+
self.qa_system = PDFQASystem()
|
81 |
+
self.responses = {
|
82 |
+
"greet": ["π Hello! I'm your document assistant.", "Hi there! Ready to answer your document questions."],
|
83 |
+
"bye": ["Goodbye!", "See you later!", "Thanks for using the assistant!"],
|
84 |
+
"help": "Upload a PDF and ask questions. Iβll answer from its content!",
|
85 |
+
"no_doc": "Please upload a PDF document first."
|
86 |
+
}
|
87 |
+
|
88 |
+
def handle_query(self, text):
|
89 |
+
tokens = tokenize(text)
|
90 |
+
intent = self.intent_recognizer.predict(tokens)
|
91 |
+
|
92 |
+
if intent == "greet":
|
93 |
+
return random.choice(self.responses["greet"])
|
94 |
+
elif intent == "bye":
|
95 |
+
return random.choice(self.responses["bye"])
|
96 |
+
elif intent == "help":
|
97 |
+
return self.responses["help"]
|
98 |
+
elif intent == "qa":
|
99 |
+
if self.qa_system.active_document:
|
100 |
+
return self.qa_system.answer_question(text)
|
101 |
+
else:
|
102 |
+
return self.responses["no_doc"]
|
103 |
+
else:
|
104 |
+
return "π€ Iβm not sure how to respond. Try saying 'help'."
|
105 |
+
|
106 |
+
# ---------------------
|
107 |
+
# Streamlit UI
|
108 |
+
# ---------------------
|
109 |
+
st.set_page_config(page_title="Document AI Assistant", page_icon="π")
|
110 |
+
st.title("π AI PDF Assistant")
|
111 |
+
st.markdown("Ask questions from uploaded PDF files!")
|
112 |
+
|
113 |
+
ai = DocumentAI()
|
114 |
+
|
115 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
116 |
+
|
117 |
+
if uploaded_file:
|
118 |
+
ai.qa_system.process_pdf_stream(uploaded_file)
|
119 |
+
st.success(f"β
PDF '{uploaded_file.name}' processed successfully!")
|
120 |
+
|
121 |
+
query = st.text_input("Ask a question from the document:")
|
122 |
|
123 |
+
if query:
|
124 |
+
answer = ai.handle_query(query)
|
125 |
+
st.markdown(f"**π§ Answer:** {answer}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|