gaur3009 commited on
Commit
fd5a923
·
verified ·
1 Parent(s): 96c5995

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -0
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ import cv2
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ from cloth_segmentation.networks.u2net import U2NET
8
+ import matplotlib.colors as mcolors
9
+
10
+ # Load U²-Net
11
+ model_path = "cloth_segmentation/networks/u2net.pth"
12
+ model = U2NET(3, 1)
13
+ state_dict = torch.load(model_path, map_location=torch.device("cpu"))
14
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
15
+ model.load_state_dict(state_dict)
16
+ model.eval()
17
+
18
+ # Util to get BGR color from name
19
+ def get_bgr_from_color_name(color_name):
20
+ try:
21
+ rgb = mcolors.to_rgb(color_name.lower())
22
+ return tuple(int(255 * c) for c in rgb[::-1]) # Convert to BGR
23
+ except:
24
+ return (0, 0, 255) # Default to red
25
+
26
+ # Mask refinement
27
+ def refine_mask(mask):
28
+ close_kernel = np.ones((5, 5), np.uint8)
29
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
30
+ erode_kernel = np.ones((3, 3), np.uint8)
31
+ mask = cv2.erode(mask, erode_kernel, iterations=1)
32
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
33
+ return cv2.GaussianBlur(mask, (5, 5), 1.5)
34
+
35
+ # U²-Net segmentation
36
+ def segment_dress(image_np):
37
+ transform_pipeline = transforms.Compose([
38
+ transforms.ToTensor(),
39
+ transforms.Resize((320, 320))
40
+ ])
41
+ image = Image.fromarray(image_np).convert("RGB")
42
+ input_tensor = transform_pipeline(image).unsqueeze(0)
43
+
44
+ with torch.no_grad():
45
+ output = model(input_tensor)[0][0].squeeze().cpu().numpy()
46
+
47
+ output = (output - output.min()) / (output.max() - output.min() + 1e-8)
48
+ adaptive_thresh = np.mean(output) + 0.2
49
+ dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255
50
+ return refine_mask(cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST))
51
+
52
+ # Optional GrabCut refinement
53
+ def apply_grabcut(image_np, dress_mask):
54
+ bgd_model = np.zeros((1, 65), np.float64)
55
+ fgd_model = np.zeros((1, 65), np.float64)
56
+ mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8')
57
+ coords = cv2.findNonZero(dress_mask)
58
+ if coords is not None:
59
+ x, y, w, h = cv2.boundingRect(coords)
60
+ rect = (x, y, w, h)
61
+ cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK)
62
+ refined = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")
63
+ return refine_mask(refined)
64
+
65
+ # LAB color recoloring
66
+ def recolor_dress(image_np, dress_mask, target_color):
67
+ target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
68
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
69
+
70
+ dress_pixels = img_lab[dress_mask > 0]
71
+ if len(dress_pixels) == 0:
72
+ return image_np
73
+
74
+ mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0)
75
+ a_shift = target_color_lab[1] - mean_A
76
+ b_shift = target_color_lab[2] - mean_B
77
+
78
+ img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255)
79
+ img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255)
80
+
81
+ img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
82
+ feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7)
83
+ lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7
84
+ adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8)
85
+
86
+ return (image_np * (1 - adaptive_feather[..., None] / 255) + img_recolored * (adaptive_feather[..., None] / 255)).astype(np.uint8)
87
+
88
+ # Main function
89
+ def change_dress_color(img, color_prompt):
90
+ if img is None or not color_prompt:
91
+ return img
92
+
93
+ img_np = np.array(img)
94
+ target_bgr = get_bgr_from_color_name(color_prompt)
95
+
96
+ try:
97
+ dress_mask = segment_dress(img_np)
98
+ if np.sum(dress_mask) < 1000:
99
+ return img
100
+ dress_mask = apply_grabcut(img_np, dress_mask)
101
+ img_recolored = recolor_dress(img_np, dress_mask, target_bgr)
102
+ return Image.fromarray(img_recolored)
103
+ except Exception as e:
104
+ print(f"Error: {e}")
105
+ return img
106
+
107
+ # Gradio UI
108
+ with gr.Blocks() as demo:
109
+ gr.Markdown("## 🎨 AI Dress Recolorer - Prompt Based")
110
+ gr.Markdown("Upload an image and type a color (e.g., 'lavender', 'light green', 'royal blue').")
111
+
112
+ with gr.Row():
113
+ with gr.Column():
114
+ input_image = gr.Image(type="pil", label="Upload Image")
115
+ color_input = gr.Textbox(label="Enter Dress Color", placeholder="e.g. crimson, lavender, sky blue")
116
+ recolor_btn = gr.Button("Apply New Color")
117
+
118
+ with gr.Column():
119
+ output_image = gr.Image(type="pil", label="Recolored Result")
120
+
121
+ recolor_btn.click(fn=change_dress_color, inputs=[input_image, color_input], outputs=output_image)
122
+
123
+ if __name__ == "__main__":
124
+ demo.launch()