Update app.py
Browse files
app.py
CHANGED
|
@@ -3,12 +3,18 @@ from transformers import BertTokenizer, BertModel, GPT2LMHeadModel, GPT2Tokenize
|
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import os
|
| 6 |
-
import
|
| 7 |
-
from fastapi import FastAPI
|
| 8 |
-
from pydantic import BaseModel
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
data = {
|
| 13 |
"questions": [
|
| 14 |
"What is Rookus?",
|
|
@@ -33,14 +39,6 @@ data = {
|
|
| 33 |
"default_answers": "I'm sorry, I cannot answer this right now. Your question has been saved, and we will get back to you with a response soon."
|
| 34 |
}
|
| 35 |
|
| 36 |
-
bert_model_name = 'models/bert'
|
| 37 |
-
bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name)
|
| 38 |
-
bert_model = BertModel.from_pretrained(bert_model_name)
|
| 39 |
-
|
| 40 |
-
gpt2_model_name = 'models/gpt2'
|
| 41 |
-
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
|
| 42 |
-
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)
|
| 43 |
-
|
| 44 |
def get_bert_embeddings(texts):
|
| 45 |
inputs = bert_tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
| 46 |
with torch.no_grad():
|
|
@@ -66,12 +64,7 @@ def generate_gpt2_response(prompt, model, tokenizer, max_length=100):
|
|
| 66 |
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1)
|
| 67 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
query: str
|
| 71 |
-
|
| 72 |
-
@app.post("/query/")
|
| 73 |
-
def answer_query(request: QueryRequest):
|
| 74 |
-
user_query = request.query
|
| 75 |
closest_question, similarity = get_closest_question(user_query, data['questions'], threshold=0.95)
|
| 76 |
if closest_question and similarity >= 0.95:
|
| 77 |
answer_index = data['questions'].index(closest_question)
|
|
@@ -89,8 +82,15 @@ def answer_query(request: QueryRequest):
|
|
| 89 |
df.to_excel(writer, index=False)
|
| 90 |
answer = data['default_answers']
|
| 91 |
|
| 92 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
if __name__ == "__main__":
|
| 95 |
-
|
| 96 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import os
|
| 6 |
+
import gradio as gr
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Load the models and tokenizers
|
| 9 |
+
bert_model_name = 'bert-base-uncased'
|
| 10 |
+
bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name)
|
| 11 |
+
bert_model = BertModel.from_pretrained(bert_model_name)
|
| 12 |
|
| 13 |
+
gpt2_model_name = 'gpt2'
|
| 14 |
+
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
|
| 15 |
+
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)
|
| 16 |
+
|
| 17 |
+
# Load the data
|
| 18 |
data = {
|
| 19 |
"questions": [
|
| 20 |
"What is Rookus?",
|
|
|
|
| 39 |
"default_answers": "I'm sorry, I cannot answer this right now. Your question has been saved, and we will get back to you with a response soon."
|
| 40 |
}
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def get_bert_embeddings(texts):
|
| 43 |
inputs = bert_tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
| 44 |
with torch.no_grad():
|
|
|
|
| 64 |
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1)
|
| 65 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 66 |
|
| 67 |
+
def answer_query(user_query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
closest_question, similarity = get_closest_question(user_query, data['questions'], threshold=0.95)
|
| 69 |
if closest_question and similarity >= 0.95:
|
| 70 |
answer_index = data['questions'].index(closest_question)
|
|
|
|
| 82 |
df.to_excel(writer, index=False)
|
| 83 |
answer = data['default_answers']
|
| 84 |
|
| 85 |
+
return answer
|
| 86 |
+
|
| 87 |
+
iface = gr.Interface(
|
| 88 |
+
fn=answer_query,
|
| 89 |
+
inputs="text",
|
| 90 |
+
outputs="text",
|
| 91 |
+
title="Rookus AI Query Interface",
|
| 92 |
+
description="Ask questions about Rookus and get answers generated by AI."
|
| 93 |
+
)
|
| 94 |
|
| 95 |
if __name__ == "__main__":
|
| 96 |
+
iface.launch()
|
|
|