Scaper_search / app.py
gaur3009's picture
Update app.py
69f26d5 verified
raw
history blame
1.5 kB
import gradio as gr
from search import search_google
from scraper import scrape_url
from rag import VectorStore
from llm import generate_answer
vs = VectorStore()
def ask_agent(question):
urls = [u for u in search_google(question, num_results=3) if u.startswith("http")]
texts_images = [scrape_url(url) for url in urls]
texts = [ti[0] for ti in texts_images if not ti[0].startswith("[Error")]
images = [ti[1] for ti in texts_images] # list of list of images
# add to vector store
vs.add_texts(texts)
relevant = vs.retrieve(question, top_k=2)
context = "\n\n".join(relevant)
# generate answer
answer = generate_answer(context, question)
# build image markdown with source
image_markdown = ""
for url, imgs in zip(urls, images):
if imgs:
# show first image as thumbnail
img_url = imgs[0]
image_markdown += f"![image]({img_url})\n"
image_markdown += f"[Source]({url})\n\n"
final_output = f"## 🧠 Answer\n\n{answer}\n\n---\n## πŸ“Έ Images & Sources\n\n{image_markdown}"
return final_output
with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet")) as demo:
gr.Markdown("# πŸ” **AI Web RAG Agent**\nAsk me anything, I'll search, scrape text & images, and answer!")
inp = gr.Textbox(label="Your question", placeholder="e.g., Best laptop under 50,000 INR")
btn = gr.Button("Ask")
out = gr.Markdown()
btn.click(fn=ask_agent, inputs=inp, outputs=out)
demo.launch()