Scaper_search / llm.py
gaur3009's picture
Update llm.py
9e97937 verified
raw
history blame
1.17 kB
from transformers import pipeline
# Load conversational model (small version for demo)
qa_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-medium",
max_new_tokens=200
)
def generate_answer(question, context, search_results):
# Build context-aware prompt
background = "\n".join([
f"Source {i+1}: {res['title']}\nContent: {res['content'][:1000]}"
for i, res in enumerate(search_results)
])
prompt = f"""
[Conversation History]
{context}
[Research Materials]
{background}
[User Question]
{question}
[Assistant Response Guidelines]
1. Answer conversationally like a helpful assistant
2. Acknowledge if previous context exists
3. Cite sources using numbers like [1], [2]
4. Be concise but comprehensive
5. If unsure, say so and suggest alternative approaches
Assistant:
"""
# Generate response
response = qa_pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_k=50,
pad_token_id=50256 # DialoGPT pad token
)[0]['generated_text'].split("Assistant:")[-1].strip()
return {
"response": response,
"sources": search_results
}