Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
# Load conversational model (small version for demo) | |
qa_pipeline = pipeline( | |
"text-generation", | |
model="microsoft/DialoGPT-medium", | |
max_new_tokens=200 | |
) | |
def generate_answer(question, context, search_results): | |
# Build context-aware prompt | |
background = "\n".join([ | |
f"Source {i+1}: {res['title']}\nContent: {res['content'][:1000]}" | |
for i, res in enumerate(search_results) | |
]) | |
prompt = f""" | |
[Conversation History] | |
{context} | |
[Research Materials] | |
{background} | |
[User Question] | |
{question} | |
[Assistant Response Guidelines] | |
1. Answer conversationally like a helpful assistant | |
2. Acknowledge if previous context exists | |
3. Cite sources using numbers like [1], [2] | |
4. Be concise but comprehensive | |
5. If unsure, say so and suggest alternative approaches | |
Assistant: | |
""" | |
# Generate response | |
response = qa_pipeline( | |
prompt, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
pad_token_id=50256 # DialoGPT pad token | |
)[0]['generated_text'].split("Assistant:")[-1].strip() | |
return { | |
"response": response, | |
"sources": search_results | |
} |