Scaper_search / llm.py
gaur3009's picture
Update llm.py
ace7592 verified
raw
history blame
642 Bytes
from transformers import pipeline
qa_pipeline = pipeline(
"text2text-generation",
model="google/flan-t5-large",
device=0 if torch.cuda.is_available() else -1
)
def generate_answer(context, question):
prompt = f"""
You are a helpful research assistant. Use the context to answer the question.
Context:
{context}
Question: {question}
Answer in a comprehensive paragraph with key details:
"""
result = qa_pipeline(
prompt,
max_length=512,
do_sample=True,
temperature=0.7,
top_p=0.9
)
return result[0]['generated_text'].strip()