Scaper_search / rag.py
gaur3009's picture
Update rag.py
9fb5174 verified
raw
history blame
1.43 kB
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# Load model only once
embedder = SentenceTransformer('all-MiniLM-L6-v2')
DIMENSION = 384 # Fixed dimension for all-MiniLM-L6-v2
class VectorStore:
def __init__(self):
self.texts = []
self.index = None
self.embeddings = None
def add_texts(self, texts):
"""Add list of texts to the store."""
if not texts:
return
new_embeds = embedder.encode(texts)
# Initialize index if needed
if self.index is None:
self.index = faiss.IndexFlatL2(DIMENSION)
self.embeddings = new_embeds
else:
self.embeddings = np.vstack([self.embeddings, new_embeds])
# Rebuild index with all embeddings
self.index.reset()
self.index.add(self.embeddings.astype('float32'))
self.texts.extend(texts)
def retrieve(self, query, top_k=3):
"""Return top-k relevant texts for the query."""
if not self.has_data():
return []
query_embed = embedder.encode([query])
_, I = self.index.search(query_embed.astype('float32'), top_k)
return [self.texts[i] for i in I[0] if i < len(self.texts)]
def has_data(self):
"""Check if we have any data stored"""
return self.index is not None and self.index.ntotal > 0