Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update llm.py
Browse files
    	
        llm.py
    CHANGED
    
    | @@ -1,23 +1,20 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 3 |  | 
| 4 | 
            -
            tokenizer = AutoTokenizer.from_pretrained(" | 
| 5 | 
            -
            model =  | 
| 6 | 
            -
             | 
| 7 | 
            -
            # Fix: add pad_token_id if missing
         | 
| 8 | 
            -
            if tokenizer.pad_token_id is None:
         | 
| 9 | 
            -
                tokenizer.pad_token_id = tokenizer.eos_token_id
         | 
| 10 |  | 
| 11 | 
             
            def generate_answer(context, question):
         | 
| 12 | 
            -
                prompt = f"Context | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
|  | |
|  | |
|  | |
| 15 |  | 
| 16 | 
            -
                inputs = tokenizer(prompt, return_tensors='pt', truncation=True, max_length= | 
| 17 | 
             
                outputs = model.generate(
         | 
| 18 | 
            -
                    inputs | 
| 19 | 
            -
                    max_new_tokens= | 
| 20 | 
            -
                    do_sample= | 
| 21 | 
            -
                    pad_token_id=tokenizer.eos_token_id  # fix warning
         | 
| 22 | 
             
                )
         | 
| 23 | 
             
                return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
         | 
|  | |
| 1 | 
            +
            from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
         | 
|  | |
| 2 |  | 
| 3 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
         | 
| 4 | 
            +
            model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
         | 
|  | |
|  | |
|  | |
|  | |
| 5 |  | 
| 6 | 
             
            def generate_answer(context, question):
         | 
| 7 | 
            +
                prompt = f"""Context:
         | 
| 8 | 
            +
            {context}
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            Based on the above context, answer the question:
         | 
| 11 | 
            +
            Question: {question}
         | 
| 12 | 
            +
            Answer:"""
         | 
| 13 |  | 
| 14 | 
            +
                inputs = tokenizer(prompt, return_tensors='pt', truncation=True, max_length=512)
         | 
| 15 | 
             
                outputs = model.generate(
         | 
| 16 | 
            +
                    **inputs,
         | 
| 17 | 
            +
                    max_new_tokens=80,
         | 
| 18 | 
            +
                    do_sample=False  # deterministic
         | 
|  | |
| 19 | 
             
                )
         | 
| 20 | 
             
                return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
         |