Spaces:
Runtime error
Runtime error
Update llm.py
Browse files
llm.py
CHANGED
@@ -1,10 +1,23 @@
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
|
3 |
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
4 |
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
5 |
|
|
|
|
|
|
|
|
|
6 |
def generate_answer(context, question):
|
7 |
prompt = f"Context:\n{context}\n\nQuestion: {question}\nAnswer:"
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
|
|
1 |
+
# llm.py
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
5 |
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
6 |
|
7 |
+
# Fix: add pad_token_id if missing
|
8 |
+
if tokenizer.pad_token_id is None:
|
9 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
10 |
+
|
11 |
def generate_answer(context, question):
|
12 |
prompt = f"Context:\n{context}\n\nQuestion: {question}\nAnswer:"
|
13 |
+
# Limit to last N chars if prompt is too long
|
14 |
+
prompt = prompt[-1000:]
|
15 |
+
|
16 |
+
inputs = tokenizer(prompt, return_tensors='pt', truncation=True, max_length=1024)
|
17 |
+
outputs = model.generate(
|
18 |
+
inputs["input_ids"],
|
19 |
+
max_new_tokens=50,
|
20 |
+
do_sample=True,
|
21 |
+
pad_token_id=tokenizer.eos_token_id # fix warning
|
22 |
+
)
|
23 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|