Spaces:
Runtime error
Runtime error
Update rag.py
Browse files
rag.py
CHANGED
@@ -1,35 +1,28 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
class VectorStore:
|
6 |
def __init__(self):
|
7 |
-
self.
|
8 |
-
self.
|
9 |
-
self.
|
10 |
-
chunk_size=500,
|
11 |
-
chunk_overlap=50
|
12 |
-
)
|
13 |
|
14 |
def add_texts(self, texts):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
self.text_splitter.split_text("\n\n".join(texts)),
|
22 |
-
self.embedder
|
23 |
-
)
|
24 |
-
else:
|
25 |
-
self.vectorstore.add_texts(
|
26 |
-
self.text_splitter.split_text("\n\n".join(texts))
|
27 |
-
)
|
28 |
|
29 |
def retrieve(self, query, top_k=3):
|
30 |
-
|
|
|
31 |
return []
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
]
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# load model only once
|
6 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
7 |
|
8 |
class VectorStore:
|
9 |
def __init__(self):
|
10 |
+
self.texts = []
|
11 |
+
self.embeddings = []
|
12 |
+
self.index = None
|
|
|
|
|
|
|
13 |
|
14 |
def add_texts(self, texts):
|
15 |
+
"""Add list of texts to the store."""
|
16 |
+
new_embeds = embedder.encode(texts)
|
17 |
+
self.texts.extend(texts)
|
18 |
+
self.embeddings.extend(new_embeds)
|
19 |
+
self.index = faiss.IndexFlatL2(new_embeds.shape[1])
|
20 |
+
self.index.add(np.array(self.embeddings))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def retrieve(self, query, top_k=3):
|
23 |
+
"""Return top-k relevant texts for the query."""
|
24 |
+
if not self.index:
|
25 |
return []
|
26 |
+
query_embed = embedder.encode([query])
|
27 |
+
D, I = self.index.search(np.array(query_embed), k=top_k)
|
28 |
+
return [self.texts[i] for i in I[0]]
|
|