Spaces:
Running
Running
File size: 3,238 Bytes
984b1c3 ac99583 984b1c3 fa3d84c 984b1c3 1c2f991 fa3d84c 1c2f991 984b1c3 9582f0e 984b1c3 9582f0e fa3d84c 9582f0e fa3d84c 9582f0e 984b1c3 65014ef 984b1c3 9582f0e 984b1c3 fa3d84c 984b1c3 fa3d84c 984b1c3 fa3d84c af8c4a2 c8390c9 fa3d84c af8c4a2 fa3d84c 65014ef 984b1c3 af8c4a2 984b1c3 65014ef 984b1c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import gradio as gr
import numpy as np
import torch
import cv2
from PIL import Image
from torchvision import transforms
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
# Load U²-Net model
model_path = "cloth_segmentation/networks/u2net.pth"
model = U2NET(3, 1)
# Load the state dictionary
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.eval()
def segment_dress(image_np):
"""Segment the dress from the image using U²-Net and refine the mask."""
transform_pipeline = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((320, 320))
])
image = Image.fromarray(image_np).convert("RGB")
input_tensor = transform_pipeline(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask
# Resize mask to original image size
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
# Refine mask using morphological operations
kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area
mask = cv2.GaussianBlur(mask, (5, 5), 0) # Smooth edges
return mask
def change_dress_color(image_path, color):
"""Change the dress color naturally while keeping textures."""
if image_path is None:
return None
img = Image.open(image_path).convert("RGB")
img_np = np.array(img)
mask = segment_dress(img_np)
if mask is None:
return img # No dress detected
# Convert image to HSV for color modification
img_hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
# Define new color in HSV (only modifying the Hue)
color_map = {
"Red": 0, # Hue value for Red
"Blue": 120, # Hue value for Blue
"Green": 60, # Hue value for Green
"Yellow": 30, # Hue value for Yellow
"Purple": 150 # Hue value for Purple
}
new_hue = color_map.get(color, 0)
# Modify only the Hue channel where the mask is applied
img_hsv[..., 0] = np.where(mask > 128, new_hue, img_hsv[..., 0])
# Convert back to RGB
img_recolored = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
# Apply Poisson blending for natural integration
center = (img_np.shape[1] // 2, img_np.shape[0] // 2)
img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, center, cv2.MIXED_CLONE)
return Image.fromarray(img_recolored)
# Gradio Interface
demo = gr.Interface(
fn=change_dress_color,
inputs=[
gr.Image(type="filepath", label="Upload Dress Image"),
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color")
],
outputs=gr.Image(type="pil", label="Color Changed Dress"),
title="Dress Color Changer",
description="Upload an image of a dress and select a new color to change its appearance naturally."
)
if __name__ == "__main__":
demo.launch() |