Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net | |
# Load U²-Net model | |
model_path = "cloth_segmentation/networks/u2net.pth" | |
model = U2NET(3, 1) | |
state_dict = torch.load(model_path, map_location=torch.device('cpu')) | |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix | |
model.load_state_dict(state_dict) | |
model.eval() | |
def remove_background(image_np): | |
"""Removes background using U²-Net and replaces it with white.""" | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
mask = (output > 0.5).astype(np.uint8) * 255 | |
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
white_bg = np.ones_like(image_np) * 255 # White background | |
segmented_image = np.where(mask[..., None] > 128, image_np, white_bg) | |
return segmented_image, mask | |
def segment_dress(image_np): | |
"""Segments the dress using K-means and refines with U²-Net.""" | |
# Convert to Lab color space | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
pixel_values = img_lab.reshape((-1, 3)).astype(np.float32) | |
# K-means clustering to detect dress region | |
k = 3 # Three clusters: background, skin, dress | |
_, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS) | |
labels = labels.reshape(image_np.shape[:2]) | |
# Assume dress is the largest non-background cluster | |
unique_labels, counts = np.unique(labels, return_counts=True) | |
dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background | |
# Create dress mask | |
mask = (labels == dress_label).astype(np.uint8) * 255 | |
# Refine with U²-Net prediction | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
u2net_mask = (output > 0.5).astype(np.uint8) * 255 | |
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
# Combine masks | |
refined_mask = cv2.bitwise_and(mask, u2net_mask) | |
# Morphological operations for smoothness | |
kernel = np.ones((5, 5), np.uint8) | |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel) | |
refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5) | |
return refined_mask | |
def recolor_dress(image_np, mask, target_color): | |
"""Change dress color while keeping the white background intact.""" | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] | |
# Preserve lightness (L) and change only chromatic channels (A & B) | |
blend_factor = 0.7 | |
img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1]) | |
img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2]) | |
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) | |
return img_recolored | |
def process_image(image_path, color): | |
"""Remove background, segment dress, and recolor while keeping background white.""" | |
if image_path is None: | |
return None | |
img = Image.open(image_path).convert("RGB") | |
img_np = np.array(img) | |
# Remove background | |
img_segmented, _ = remove_background(img_np) | |
# Get dress segmentation mask | |
mask = segment_dress(img_np) | |
if mask is None: | |
return Image.fromarray(img_segmented) # No dress detected, return only background removal | |
# Convert selected color to BGR | |
color_map = { | |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), | |
"Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), | |
"White": (255, 255, 255), "Black": (0, 0, 0) | |
} | |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red | |
# Apply recoloring | |
img_recolored = recolor_dress(img_segmented, mask, new_color_bgr) | |
return Image.fromarray(img_recolored) | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Dress Image"), | |
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color") | |
], | |
outputs=gr.Image(type="pil", label="Final Dress Image"), | |
title="Dress Color Changer with Background Removal", | |
description="Upload an image of a dress, remove its background, and recolor it naturally while keeping the background white." | |
) | |
if __name__ == "__main__": | |
demo.launch() |