Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net | |
# Load U²-Net model | |
model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct | |
model = U2NET(3, 1) | |
# Load the state dictionary | |
state_dict = torch.load(model_path, map_location=torch.device('cpu')) | |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix | |
model.load_state_dict(state_dict) | |
model.eval() | |
def segment_dress(image_np): | |
"""Segment the dress from the image using U²-Net and refine the mask.""" | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask | |
# Resize mask to original image size | |
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
# Apply morphological operations for better segmentation | |
kernel = np.ones((7, 7), np.uint8) | |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps | |
mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area | |
return mask | |
def change_dress_color(image_path, color): | |
"""Change the dress color based on the detected dress mask.""" | |
if image_path is None: | |
return None | |
img = Image.open(image_path).convert("RGB") | |
img_np = np.array(img) | |
mask = segment_dress(img_np) | |
if mask is None: | |
return img # No dress detected | |
# Convert the selected color to BGR | |
color_map = { | |
"Red": (0, 0, 255), | |
"Blue": (255, 0, 0), | |
"Green": (0, 255, 0), | |
"Yellow": (0, 255, 255), | |
"Purple": (128, 0, 128) | |
} | |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red | |
# Convert image to LAB color space for better blending | |
img_lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB) | |
new_color_lab = cv2.cvtColor(np.uint8([[new_color_bgr]]), cv2.COLOR_BGR2LAB)[0][0] | |
# Apply the new color while preserving texture | |
img_lab[..., 1] = np.where(mask == 255, new_color_lab[1], img_lab[..., 1]) # Modify A-channel | |
img_lab[..., 2] = np.where(mask == 255, new_color_lab[2], img_lab[..., 2]) # Modify B-channel | |
# Convert back to RGB | |
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) | |
return Image.fromarray(img_recolored) | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=change_dress_color, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Dress Image"), | |
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color") | |
], | |
outputs=gr.Image(type="pil", label="Color Changed Dress"), | |
title="Dress Color Changer", | |
description="Upload an image of a dress and select a new color to change its appearance." | |
) | |
if __name__ == "__main__": | |
demo.launch() |