detecting_dress / app.py
gaur3009's picture
Update app.py
95d0b08 verified
raw
history blame
4.23 kB
import gradio as gr
import numpy as np
import torch
import cv2
from PIL import Image
from torchvision import transforms
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
# Load U²-Net model
model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct
model = U2NET(3, 1)
# Load the state dictionary
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
model.load_state_dict(state_dict)
model.eval()
def segment_dress(image_np):
"""Segment the dress from the image using U²-Net and refine the mask."""
transform_pipeline = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((320, 320))
])
image = Image.fromarray(image_np).convert("RGB")
input_tensor = transform_pipeline(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask
# Resize mask to original image size
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
# Apply morphological operations for better segmentation
kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
mask = cv2.GaussianBlur(mask, (21, 21), 10) # Smooth edges for natural blending
return mask
def get_ambient_light(img_np):
"""Estimate ambient lighting from non-dress areas for realistic blending."""
lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB)
L_channel = lab[:, :, 0] # Lightness channel
return np.median(L_channel) # Median light level in the image
def change_dress_color(image_path, color):
"""Change the dress color naturally while keeping textures and adjusting to lighting."""
if image_path is None:
return None
img = Image.open(image_path).convert("RGB")
img_np = np.array(img)
mask = segment_dress(img_np)
if mask is None:
return img # No dress detected
# Convert the selected color to BGR
color_map = {
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
"Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
"White": (255, 255, 255), "Black": (0, 0, 0)
}
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
# Convert image to LAB color space for better blending
img_lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB)
new_color_lab = cv2.cvtColor(np.uint8([[new_color_bgr]]), cv2.COLOR_BGR2LAB)[0][0]
# Adjust color to match ambient lighting
ambient_light = get_ambient_light(img_np)
img_lab[..., 0] = np.clip(img_lab[..., 0] * (ambient_light / 128), 0, 255) # Normalize lighting
# Preserve texture by modifying only A & B channels
blend_factor = 0.6 # Controls intensity of color change
img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + new_color_lab[1] * blend_factor, img_lab[..., 1])
img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + new_color_lab[2] * blend_factor, img_lab[..., 2])
# Convert back to RGB
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
# Use Poisson blending for seamless integration with the environment
img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, (img_np.shape[1]//2, img_np.shape[0]//2), cv2.MIXED_CLONE)
return Image.fromarray(img_recolored)
# Gradio Interface
demo = gr.Interface(
fn=change_dress_color,
inputs=[
gr.Image(type="filepath", label="Upload Dress Image"),
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
],
outputs=gr.Image(type="pil", label="Color Changed Dress"),
title="Dress Color Changer",
description="Upload an image of a dress and select a new color to change its appearance naturally."
)
if __name__ == "__main__":
demo.launch()