Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net | |
# Load U²-Net model | |
model_path = "cloth_segmentation/networks/u2net.pth" | |
model = U2NET(3, 1) | |
state_dict = torch.load(model_path, map_location=torch.device('cpu')) | |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix | |
model.load_state_dict(state_dict) | |
model.eval() | |
def detect_design(image_np): | |
"""Detects if a design exists on the dress using edge detection & clustering.""" | |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
edges = cv2.Canny(gray, 50, 150) | |
# Dilation to highlight patterns | |
kernel = np.ones((3, 3), np.uint8) | |
edges = cv2.dilate(edges, kernel, iterations=1) | |
# Count edge density | |
design_ratio = np.sum(edges > 0) / (image_np.shape[0] * image_np.shape[1]) | |
return design_ratio > 0.02, edges # If edge density is high, assume a design is present | |
def segment_dress(image_np): | |
"""Segment the dress using U²-Net & refine with Lab color space.""" | |
# Convert to Lab space | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
L, A, B = cv2.split(img_lab) | |
# Use K-means clustering to detect dominant dress region | |
pixel_values = img_lab.reshape((-1, 3)).astype(np.float32) | |
k = 3 # Three clusters: background, skin, dress | |
_, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS) | |
labels = labels.reshape(image_np.shape[:2]) | |
# Assume dress is the largest non-background cluster | |
unique_labels, counts = np.unique(labels, return_counts=True) | |
dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background | |
# Create dress mask | |
mask = (labels == dress_label).astype(np.uint8) * 255 | |
# Use U²-Net prediction to refine segmentation | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
u2net_mask = (output > 0.5).astype(np.uint8) * 255 | |
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
# Combine K-means and U²-Net masks | |
refined_mask = cv2.bitwise_and(mask, u2net_mask) | |
# Morphological operations for smoothness | |
kernel = np.ones((5, 5), np.uint8) | |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel) | |
refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5) | |
return refined_mask | |
def recolor_dress(image_np, mask, target_color, edges): | |
"""Change dress color while preserving texture, shadows, and designs.""" | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] | |
# Exclude design from recoloring | |
design_mask = (edges > 0).astype(np.uint8) * 255 | |
mask = cv2.bitwise_and(mask, cv2.bitwise_not(design_mask)) | |
# Preserve lightness (L) and change only chromatic channels (A & B) | |
blend_factor = 0.7 | |
img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1]) | |
img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2]) | |
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) | |
return img_recolored | |
def change_dress_color(image_path, color): | |
"""Change the dress color naturally while keeping designs intact.""" | |
if image_path is None: | |
return None | |
img = Image.open(image_path).convert("RGB") | |
img_np = np.array(img) | |
# Detect if a design is present | |
design_present, edges = detect_design(img_np) | |
# Get dress segmentation mask | |
mask = segment_dress(img_np) | |
if mask is None: | |
return img # No dress detected | |
# Convert the selected color to BGR | |
color_map = { | |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), | |
"Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), | |
"White": (255, 255, 255), "Black": (0, 0, 0) | |
} | |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red | |
# Apply recoloring logic | |
if design_present: | |
print("Design detected! Coloring only non-design areas.") | |
img_recolored = recolor_dress(img_np, mask, new_color_bgr, edges) | |
else: | |
print("No design detected. Coloring entire dress.") | |
img_recolored = recolor_dress(img_np, mask, new_color_bgr, np.zeros_like(mask)) # No design mask | |
return Image.fromarray(img_recolored) | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=change_dress_color, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Dress Image"), | |
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color") | |
], | |
outputs=gr.Image(type="pil", label="Color Changed Dress"), | |
title="Dress Color Changer", | |
description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs." | |
) | |
if __name__ == "__main__": | |
demo.launch() |