gaur3009 commited on
Commit
9bbf95a
·
verified ·
1 Parent(s): 490bf43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -63
app.py CHANGED
@@ -4,51 +4,18 @@ import torch
4
  import cv2
5
  from PIL import Image
6
  from torchvision import transforms
7
- from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
- # Load U²-Net model
10
  model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
- state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
- def detect_design(image_np):
18
- """Detects if a design exists on the dress using edge detection & clustering."""
19
- gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
20
- edges = cv2.Canny(gray, 50, 150)
21
-
22
- # Dilation to highlight patterns
23
- kernel = np.ones((3, 3), np.uint8)
24
- edges = cv2.dilate(edges, kernel, iterations=1)
25
-
26
- # Count edge density
27
- design_ratio = np.sum(edges > 0) / (image_np.shape[0] * image_np.shape[1])
28
-
29
- return design_ratio > 0.02, edges # If edge density is high, assume a design is present
30
-
31
  def segment_dress(image_np):
32
- """Segment the dress using U²-Net & refine with Lab color space."""
33
-
34
- # Convert to Lab space
35
- img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
36
- L, A, B = cv2.split(img_lab)
37
-
38
- # Use K-means clustering to detect dominant dress region
39
- pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
40
- k = 3 # Three clusters: background, skin, dress
41
- _, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
42
- labels = labels.reshape(image_np.shape[:2])
43
-
44
- # Assume dress is the largest non-background cluster
45
- unique_labels, counts = np.unique(labels, return_counts=True)
46
- dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
47
-
48
- # Create dress mask
49
- mask = (labels == dress_label).astype(np.uint8) * 255
50
-
51
- # Use U²-Net prediction to refine segmentation
52
  transform_pipeline = transforms.Compose([
53
  transforms.ToTensor(),
54
  transforms.Resize((320, 320))
@@ -59,49 +26,48 @@ def segment_dress(image_np):
59
 
60
  with torch.no_grad():
61
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
62
-
63
  u2net_mask = (output > 0.5).astype(np.uint8) * 255
64
  u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
65
-
66
- # Combine K-means and U²-Net masks
67
- refined_mask = cv2.bitwise_and(mask, u2net_mask)
68
 
69
- # Morphological operations for smoothness
70
- kernel = np.ones((5, 5), np.uint8)
71
- refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
72
- refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
 
 
73
 
74
- return refined_mask
 
 
 
75
 
76
- def recolor_dress(image_np, mask, target_color, edges):
77
- """Change dress color while preserving texture, shadows, and designs."""
78
 
 
79
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
 
 
80
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
81
 
82
- # Exclude design from recoloring
83
- design_mask = (edges > 0).astype(np.uint8) * 255
84
- mask = cv2.bitwise_and(mask, cv2.bitwise_not(design_mask))
85
-
86
  # Preserve lightness (L) and change only chromatic channels (A & B)
87
- blend_factor = 0.7
88
  img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
89
  img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
90
 
 
91
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
92
  return img_recolored
93
 
94
  def change_dress_color(image_path, color):
95
- """Change the dress color naturally while keeping designs intact."""
96
  if image_path is None:
97
  return None
98
 
99
  img = Image.open(image_path).convert("RGB")
100
  img_np = np.array(img)
101
 
102
- # Detect if a design is present
103
- design_present, edges = detect_design(img_np)
104
-
105
  # Get dress segmentation mask
106
  mask = segment_dress(img_np)
107
 
@@ -117,12 +83,7 @@ def change_dress_color(image_path, color):
117
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
118
 
119
  # Apply recoloring logic
120
- if design_present:
121
- print("Design detected! Coloring only non-design areas.")
122
- img_recolored = recolor_dress(img_np, mask, new_color_bgr, edges)
123
- else:
124
- print("No design detected. Coloring entire dress.")
125
- img_recolored = recolor_dress(img_np, mask, new_color_bgr, np.zeros_like(mask)) # No design mask
126
 
127
  return Image.fromarray(img_recolored)
128
 
 
4
  import cv2
5
  from PIL import Image
6
  from torchvision import transforms
7
+ from cloth_segmentation.networks.u2net import U2NET
8
 
9
+ # Load U²-Net Model
10
  model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
+ state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def segment_dress(image_np):
18
+ """Segment the dress using U²-Net and GrabCut."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  transform_pipeline = transforms.Compose([
20
  transforms.ToTensor(),
21
  transforms.Resize((320, 320))
 
26
 
27
  with torch.no_grad():
28
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
29
+
30
  u2net_mask = (output > 0.5).astype(np.uint8) * 255
31
  u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
 
 
 
32
 
33
+ # Apply GrabCut to refine the mask
34
+ mask = np.zeros(image_np.shape[:2], np.uint8)
35
+ mask[u2net_mask > 128] = cv2.GC_FGD
36
+ mask[u2net_mask <= 128] = cv2.GC_BGD
37
+ bg_model = np.zeros((1, 65), np.float64)
38
+ fg_model = np.zeros((1, 65), np.float64)
39
 
40
+ cv2.grabCut(image_np, mask, None, bg_model, fg_model, 5, cv2.GC_INIT_WITH_MASK)
41
+ mask = np.where((mask == 2) | (mask == 0), 0, 255).astype(np.uint8)
42
+
43
+ return mask
44
 
45
+ def recolor_dress(image_np, mask, target_color):
46
+ """Recolor the dress while keeping texture, shadows, and designs."""
47
 
48
+ # Convert to LAB color space
49
  img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
50
+
51
+ # Target color in LAB
52
  target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
53
 
 
 
 
 
54
  # Preserve lightness (L) and change only chromatic channels (A & B)
55
+ blend_factor = 0.8
56
  img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
57
  img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
58
 
59
+ # Convert back to RGB
60
  img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
61
  return img_recolored
62
 
63
  def change_dress_color(image_path, color):
64
+ """Change the dress color while preserving texture and design details."""
65
  if image_path is None:
66
  return None
67
 
68
  img = Image.open(image_path).convert("RGB")
69
  img_np = np.array(img)
70
 
 
 
 
71
  # Get dress segmentation mask
72
  mask = segment_dress(img_np)
73
 
 
83
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
84
 
85
  # Apply recoloring logic
86
+ img_recolored = recolor_dress(img_np, mask, new_color_bgr)
 
 
 
 
 
87
 
88
  return Image.fromarray(img_recolored)
89