import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Import U²-Net # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct model = U2NET(3, 1) # Load the state dictionary state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix model.load_state_dict(state_dict) model.eval() def segment_dress(image_np): """Segment the dress from the image using U²-Net and refine the mask.""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask # Resize mask to original image size mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Apply morphological operations for better segmentation kernel = np.ones((7, 7), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area return mask def change_dress_color(image_path, color): """Change the dress color naturally while keeping textures.""" if image_path is None: return None img = Image.open(image_path).convert("RGB") img_np = np.array(img) mask = segment_dress(img_np) if mask is None: return img # No dress detected # Convert the selected color to BGR color_map = { "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), "Purple": (128, 0, 128) } new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red # Convert image to LAB color space for better blending img_lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB) new_color_lab = cv2.cvtColor(np.uint8([[new_color_bgr]]), cv2.COLOR_BGR2LAB)[0][0] # Preserve texture by only modifying the A & B channels img_lab[..., 1] = np.where(mask == 255, new_color_lab[1], img_lab[..., 1]) # Modify A-channel img_lab[..., 2] = np.where(mask == 255, new_color_lab[2], img_lab[..., 2]) # Modify B-channel # Convert back to RGB img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) # Apply Poisson blending for realistic color application img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, (img_np.shape[1]//2, img_np.shape[0]//2), cv2.NORMAL_CLONE) return Image.fromarray(img_recolored) # Gradio Interface demo = gr.Interface( fn=change_dress_color, inputs=[ gr.Image(type="filepath", label="Upload Dress Image"), gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color") ], outputs=gr.Image(type="pil", label="Color Changed Dress"), title="Dress Color Changer", description="Upload an image of a dress and select a new color to change its appearance naturally." ) if __name__ == "__main__": demo.launch()