import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Import U²-Net # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix model.load_state_dict(state_dict) model.eval() def detect_design(image_np): """Detects the design on the dress using edge detection and adaptive thresholding.""" gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) # Use adaptive thresholding to segment the design adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) # Detect edges using Canny edges = cv2.Canny(gray, 50, 150) # Combine both masks design_mask = cv2.bitwise_or(adaptive_thresh, edges) # Morphological operations to remove noise kernel = np.ones((3, 3), np.uint8) design_mask = cv2.morphologyEx(design_mask, cv2.MORPH_CLOSE, kernel) return design_mask def segment_dress(image_np): """Segment the dress using U²-Net""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() # Convert output to mask dress_mask = (output > 0.5).astype(np.uint8) * 255 dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Morphological operations for smoothness kernel = np.ones((5, 5), np.uint8) dress_mask = cv2.morphologyEx(dress_mask, cv2.MORPH_CLOSE, kernel) return dress_mask def recolor_dress(image_np, dress_mask, design_mask, target_color): """Change dress color while preserving designs""" img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] # Ensure the design areas are NOT recolored recolor_mask = cv2.bitwise_and(dress_mask, cv2.bitwise_not(design_mask)) # Apply color change only to the non-design dress areas blend_factor = 0.8 img_lab[..., 1] = np.where(recolor_mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1]) img_lab[..., 2] = np.where(recolor_mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2]) img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) return img_recolored def change_dress_color(image_path, color): """Change the dress color naturally while keeping designs intact.""" if image_path is None: return None img = Image.open(image_path).convert("RGB") img_np = np.array(img) # Get dress segmentation mask dress_mask = segment_dress(img_np) if dress_mask is None: return img # No dress detected # Detect design on the dress design_mask = detect_design(img_np) # Convert the selected color to BGR color_map = { "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255), "Black": (0, 0, 0) } new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red # Apply recoloring logic img_recolored = recolor_dress(img_np, dress_mask, design_mask, new_color_bgr) return Image.fromarray(img_recolored) # Gradio Interface demo = gr.Interface( fn=change_dress_color, inputs=[ gr.Image(type="filepath", label="Upload Dress Image"), gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color") ], outputs=gr.Image(type="pil", label="Color Changed Dress"), title="Dress Color Changer", description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs." ) if __name__ == "__main__": demo.launch()