import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # Import U²-Net # Load U²-Net model model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) # Load the state dictionary state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) model.eval() def segment_dress(image_np): """Segment the dress from the image using U²-Net and refine the mask.""" transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask # Resize mask to original image size mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Refine mask using morphological operations kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area mask = cv2.GaussianBlur(mask, (5, 5), 0) # Smooth edges return mask def change_dress_color(image_path, color): """Change the dress color naturally while keeping textures.""" if image_path is None: return None img = Image.open(image_path).convert("RGB") img_np = np.array(img) mask = segment_dress(img_np) if mask is None: return img # No dress detected # Convert image to HSV for color modification img_hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV) # Define new color in HSV (only modifying the Hue) color_map = { "Red": 0, # Hue value for Red "Blue": 120, # Hue value for Blue "Green": 60, # Hue value for Green "Yellow": 30, # Hue value for Yellow "Purple": 150 # Hue value for Purple } new_hue = color_map.get(color, 0) # Modify only the Hue channel where the mask is applied img_hsv[..., 0] = np.where(mask > 128, new_hue, img_hsv[..., 0]) # Convert back to RGB img_recolored = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB) # Apply Poisson blending for natural integration center = (img_np.shape[1] // 2, img_np.shape[0] // 2) img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, center, cv2.MIXED_CLONE) return Image.fromarray(img_recolored) # Gradio Interface demo = gr.Interface( fn=change_dress_color, inputs=[ gr.Image(type="filepath", label="Upload Dress Image"), gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color") ], outputs=gr.Image(type="pil", label="Color Changed Dress"), title="Dress Color Changer", description="Upload an image of a dress and select a new color to change its appearance naturally." ) if __name__ == "__main__": demo.launch()