imagier / src /pix2pix_turbo.py
gaur3009's picture
Upload 10 files
a96e5dd verified
import os
import requests
import sys
import copy
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
from peft import LoraConfig
p = "src/"
sys.path.append(p)
from model import make_1step_sched, my_vae_encoder_fwd, my_vae_decoder_fwd
class TwinConv(torch.nn.Module):
def __init__(self, convin_pretrained, convin_curr):
super(TwinConv, self).__init__()
self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
self.conv_in_curr = copy.deepcopy(convin_curr)
self.r = None
def forward(self, x):
x1 = self.conv_in_pretrained(x).detach()
x2 = self.conv_in_curr(x)
return x1 * (1 - self.r) + x2 * (self.r)
class Pix2Pix_Turbo(torch.nn.Module):
def __init__(self, pretrained_name=None, pretrained_path=None, ckpt_folder="checkpoints", lora_rank_unet=8, lora_rank_vae=4):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo", subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()
self.sched = make_1step_sched()
vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
vae.encoder.forward = my_vae_encoder_fwd.__get__(vae.encoder, vae.encoder.__class__)
vae.decoder.forward = my_vae_decoder_fwd.__get__(vae.decoder, vae.decoder.__class__)
# add the skip connection convs
vae.decoder.skip_conv_1 = torch.nn.Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_2 = torch.nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_3 = torch.nn.Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_4 = torch.nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.ignore_skip = False
unet = UNet2DConditionModel.from_pretrained("stabilityai/sd-turbo", subfolder="unet")
if pretrained_name == "edge_to_image":
url = "https://www.cs.cmu.edu/~img2img-turbo/models/edge_to_image_loras.pkl"
os.makedirs(ckpt_folder, exist_ok=True)
outf = os.path.join(ckpt_folder, "edge_to_image_loras.pkl")
if not os.path.exists(outf):
print(f"Downloading checkpoint to {outf}")
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(outf, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
print("ERROR, something went wrong")
print(f"Downloaded successfully to {outf}")
p_ckpt = outf
sd = torch.load(p_ckpt, map_location="cpu")
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
_sd_vae = vae.state_dict()
for k in sd["state_dict_vae"]:
_sd_vae[k] = sd["state_dict_vae"][k]
vae.load_state_dict(_sd_vae)
unet.add_adapter(unet_lora_config)
_sd_unet = unet.state_dict()
for k in sd["state_dict_unet"]:
_sd_unet[k] = sd["state_dict_unet"][k]
unet.load_state_dict(_sd_unet)
elif pretrained_name == "sketch_to_image_stochastic":
# download from url
url = "https://www.cs.cmu.edu/~img2img-turbo/models/sketch_to_image_stochastic_lora.pkl"
os.makedirs(ckpt_folder, exist_ok=True)
outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic_lora.pkl")
if not os.path.exists(outf):
print(f"Downloading checkpoint to {outf}")
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(outf, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
print("ERROR, something went wrong")
print(f"Downloaded successfully to {outf}")
p_ckpt = outf
convin_pretrained = copy.deepcopy(unet.conv_in)
unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)
sd = torch.load(p_ckpt, map_location="cpu")
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
_sd_vae = vae.state_dict()
for k in sd["state_dict_vae"]:
_sd_vae[k] = sd["state_dict_vae"][k]
vae.load_state_dict(_sd_vae)
unet.add_adapter(unet_lora_config)
_sd_unet = unet.state_dict()
for k in sd["state_dict_unet"]:
_sd_unet[k] = sd["state_dict_unet"][k]
unet.load_state_dict(_sd_unet)
elif pretrained_path is not None:
sd = torch.load(pretrained_path, map_location="cpu")
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
_sd_vae = vae.state_dict()
for k in sd["state_dict_vae"]:
_sd_vae[k] = sd["state_dict_vae"][k]
vae.load_state_dict(_sd_vae)
unet.add_adapter(unet_lora_config)
_sd_unet = unet.state_dict()
for k in sd["state_dict_unet"]:
_sd_unet[k] = sd["state_dict_unet"][k]
unet.load_state_dict(_sd_unet)
elif pretrained_name is None and pretrained_path is None:
print("Initializing model with random weights")
torch.nn.init.constant_(vae.decoder.skip_conv_1.weight, 1e-5)
torch.nn.init.constant_(vae.decoder.skip_conv_2.weight, 1e-5)
torch.nn.init.constant_(vae.decoder.skip_conv_3.weight, 1e-5)
torch.nn.init.constant_(vae.decoder.skip_conv_4.weight, 1e-5)
target_modules_vae = ["conv1", "conv2", "conv_in", "conv_shortcut", "conv", "conv_out",
"skip_conv_1", "skip_conv_2", "skip_conv_3", "skip_conv_4",
"to_k", "to_q", "to_v", "to_out.0",
]
vae_lora_config = LoraConfig(r=lora_rank_vae, init_lora_weights="gaussian",
target_modules=target_modules_vae)
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
target_modules_unet = [
"to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
"proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"
]
unet_lora_config = LoraConfig(r=lora_rank_unet, init_lora_weights="gaussian",
target_modules=target_modules_unet
)
unet.add_adapter(unet_lora_config)
self.lora_rank_unet = lora_rank_unet
self.lora_rank_vae = lora_rank_vae
self.target_modules_vae = target_modules_vae
self.target_modules_unet = target_modules_unet
# unet.enable_xformers_memory_efficient_attention()
unet.to("cuda")
vae.to("cuda")
self.unet, self.vae = unet, vae
self.vae.decoder.gamma = 1
self.timesteps = torch.tensor([999], device="cuda").long()
self.text_encoder.requires_grad_(False)
def set_eval(self):
self.unet.eval()
self.vae.eval()
self.unet.requires_grad_(False)
self.vae.requires_grad_(False)
def set_train(self):
self.unet.train()
self.vae.train()
for n, _p in self.unet.named_parameters():
if "lora" in n:
_p.requires_grad = True
self.unet.conv_in.requires_grad_(True)
for n, _p in self.vae.named_parameters():
if "lora" in n:
_p.requires_grad = True
self.vae.decoder.skip_conv_1.requires_grad_(True)
self.vae.decoder.skip_conv_2.requires_grad_(True)
self.vae.decoder.skip_conv_3.requires_grad_(True)
self.vae.decoder.skip_conv_4.requires_grad_(True)
def forward(self, c_t, prompt=None, prompt_tokens=None, deterministic=True, r=1.0, noise_map=None):
# either the prompt or the prompt_tokens should be provided
assert (prompt is None) != (prompt_tokens is None), "Either prompt or prompt_tokens should be provided"
if prompt is not None:
# encode the text prompt
caption_tokens = self.tokenizer(prompt, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
caption_enc = self.text_encoder(caption_tokens)[0]
else:
caption_enc = self.text_encoder(prompt_tokens)[0]
if deterministic:
encoded_control = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=caption_enc,).sample
x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)
else:
# scale the lora weights based on the r value
self.unet.set_adapters(["default"], weights=[r])
set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
encoded_control = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
# combine the input and noise
unet_input = encoded_control * r + noise_map * (1 - r)
self.unet.conv_in.r = r
unet_output = self.unet(unet_input, self.timesteps, encoder_hidden_states=caption_enc,).sample
self.unet.conv_in.r = None
x_denoised = self.sched.step(unet_output, self.timesteps, unet_input, return_dict=True).prev_sample
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
self.vae.decoder.gamma = r
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image
def save_model(self, outf):
sd = {}
sd["unet_lora_target_modules"] = self.target_modules_unet
sd["vae_lora_target_modules"] = self.target_modules_vae
sd["rank_unet"] = self.lora_rank_unet
sd["rank_vae"] = self.lora_rank_vae
sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k or "skip" in k}
torch.save(sd, outf)