Update app.py
Browse files
app.py
CHANGED
@@ -6,73 +6,71 @@ import gradio as gr
|
|
6 |
from src.image_prep import canny_from_pil
|
7 |
from src.pix2pix_turbo import Pix2Pix_Turbo
|
8 |
|
|
|
9 |
model = Pix2Pix_Turbo("edge_to_image")
|
10 |
|
11 |
-
|
12 |
def process(input_image, prompt, low_threshold, high_threshold):
|
13 |
-
#
|
14 |
new_width = input_image.width - input_image.width % 8
|
15 |
new_height = input_image.height - input_image.height % 8
|
16 |
input_image = input_image.resize((new_width, new_height))
|
|
|
|
|
17 |
canny = canny_from_pil(input_image, low_threshold, high_threshold)
|
|
|
|
|
18 |
with torch.no_grad():
|
19 |
c_t = transforms.ToTensor()(canny).unsqueeze(0).cuda()
|
20 |
output_image = model(c_t, prompt)
|
21 |
output_pil = transforms.ToPILImage()(output_image[0].cpu() * 0.5 + 0.5)
|
22 |
-
|
|
|
23 |
canny_viz = 1 - (np.array(canny) / 255)
|
24 |
canny_viz = Image.fromarray((canny_viz * 255).astype(np.uint8))
|
|
|
25 |
return canny_viz, output_pil
|
26 |
|
27 |
-
|
28 |
if __name__ == "__main__":
|
29 |
-
#
|
30 |
with gr.Blocks() as demo:
|
31 |
gr.Markdown("# Pix2pix-Turbo: **Canny Edge -> Image**")
|
|
|
32 |
with gr.Row():
|
33 |
with gr.Column():
|
34 |
-
input_image = gr.Image(
|
35 |
prompt = gr.Textbox(label="Prompt")
|
36 |
low_threshold = gr.Slider(
|
37 |
label="Canny low threshold",
|
38 |
minimum=1,
|
39 |
maximum=255,
|
40 |
value=100,
|
41 |
-
step=10
|
42 |
)
|
43 |
high_threshold = gr.Slider(
|
44 |
label="Canny high threshold",
|
45 |
minimum=1,
|
46 |
maximum=255,
|
47 |
value=200,
|
48 |
-
step=10
|
49 |
)
|
50 |
run_button = gr.Button(value="Run")
|
|
|
51 |
with gr.Column():
|
52 |
result_canny = gr.Image(type="pil")
|
|
|
53 |
with gr.Column():
|
54 |
result_output = gr.Image(type="pil")
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
low_threshold.change(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
high_threshold.change(
|
67 |
-
fn=process,
|
68 |
-
inputs=[input_image, prompt, low_threshold, high_threshold],
|
69 |
-
outputs=[result_canny, result_output],
|
70 |
-
)
|
71 |
-
run_button.click(
|
72 |
-
fn=process,
|
73 |
-
inputs=[input_image, prompt, low_threshold, high_threshold],
|
74 |
-
outputs=[result_canny, result_output],
|
75 |
-
)
|
76 |
-
|
77 |
demo.queue()
|
78 |
-
demo.launch(debug=True, share=False)
|
|
|
6 |
from src.image_prep import canny_from_pil
|
7 |
from src.pix2pix_turbo import Pix2Pix_Turbo
|
8 |
|
9 |
+
# Initialize the model
|
10 |
model = Pix2Pix_Turbo("edge_to_image")
|
11 |
|
12 |
+
# Define the processing function
|
13 |
def process(input_image, prompt, low_threshold, high_threshold):
|
14 |
+
# Resize to be a multiple of 8
|
15 |
new_width = input_image.width - input_image.width % 8
|
16 |
new_height = input_image.height - input_image.height % 8
|
17 |
input_image = input_image.resize((new_width, new_height))
|
18 |
+
|
19 |
+
# Generate canny edge image
|
20 |
canny = canny_from_pil(input_image, low_threshold, high_threshold)
|
21 |
+
|
22 |
+
# Convert to tensor and process with model
|
23 |
with torch.no_grad():
|
24 |
c_t = transforms.ToTensor()(canny).unsqueeze(0).cuda()
|
25 |
output_image = model(c_t, prompt)
|
26 |
output_pil = transforms.ToPILImage()(output_image[0].cpu() * 0.5 + 0.5)
|
27 |
+
|
28 |
+
# Visualize canny edges (invert colors)
|
29 |
canny_viz = 1 - (np.array(canny) / 255)
|
30 |
canny_viz = Image.fromarray((canny_viz * 255).astype(np.uint8))
|
31 |
+
|
32 |
return canny_viz, output_pil
|
33 |
|
|
|
34 |
if __name__ == "__main__":
|
35 |
+
# Create the Gradio interface
|
36 |
with gr.Blocks() as demo:
|
37 |
gr.Markdown("# Pix2pix-Turbo: **Canny Edge -> Image**")
|
38 |
+
|
39 |
with gr.Row():
|
40 |
with gr.Column():
|
41 |
+
input_image = gr.Image(source="upload", type="pil")
|
42 |
prompt = gr.Textbox(label="Prompt")
|
43 |
low_threshold = gr.Slider(
|
44 |
label="Canny low threshold",
|
45 |
minimum=1,
|
46 |
maximum=255,
|
47 |
value=100,
|
48 |
+
step=10
|
49 |
)
|
50 |
high_threshold = gr.Slider(
|
51 |
label="Canny high threshold",
|
52 |
minimum=1,
|
53 |
maximum=255,
|
54 |
value=200,
|
55 |
+
step=10
|
56 |
)
|
57 |
run_button = gr.Button(value="Run")
|
58 |
+
|
59 |
with gr.Column():
|
60 |
result_canny = gr.Image(type="pil")
|
61 |
+
|
62 |
with gr.Column():
|
63 |
result_output = gr.Image(type="pil")
|
64 |
+
|
65 |
+
# Set up event handlers
|
66 |
+
inputs = [input_image, prompt, low_threshold, high_threshold]
|
67 |
+
outputs = [result_canny, result_output]
|
68 |
+
|
69 |
+
prompt.submit(fn=process, inputs=inputs, outputs=outputs)
|
70 |
+
low_threshold.change(fn=process, inputs=inputs, outputs=outputs)
|
71 |
+
high_threshold.change(fn=process, inputs=inputs, outputs=outputs)
|
72 |
+
run_button.click(fn=process, inputs=inputs, outputs=outputs)
|
73 |
+
|
74 |
+
# Launch the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
demo.queue()
|
76 |
+
demo.launch(debug=True, share=False)
|