File size: 4,740 Bytes
63f2fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import os
import re
import PyPDF2
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity

# ----------------------------
# PDF Processing Engine
# ----------------------------

class PDFAnalyzer:
    def __init__(self):
        self.text_chunks = []
        self.embeddings = None
        self.active_doc = None
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        
    def process_pdf(self, filepath):
        """Handle PDF file processing pipeline"""
        try:
            if not filepath.lower().endswith('.pdf'):
                return False, "Invalid file format - PDF required"
                
            text = self._extract_text(filepath)
            self.text_chunks = self._chunk_text(text)
            self.embeddings = self.model.encode(self.text_chunks)
            self.active_doc = os.path.basename(filepath)
            return True, f"Loaded {self.active_doc} ({len(self.text_chunks)} chunks)"
            
        except PyPDF2.errors.PdfReadError:
            return False, "Error reading PDF - file may be corrupted"
        except Exception as e:
            return False, f"Processing error: {str(e)}"
    
    def _extract_text(self, filepath):
        """Extract text from PDF document"""
        text = ""
        with open(filepath, 'rb') as f:
            reader = PyPDF2.PdfReader(f)
            for page in reader.pages:
                text += page.extract_text() or ""
        return text
    
    def _chunk_text(self, text, chunk_size=400):
        """Create semantic chunks from document text"""
        sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
        chunks = []
        current_chunk = []
        count = 0
        
        for sentence in sentences:
            current_chunk.append(sentence)
            count += len(sentence.split())
            if count >= chunk_size:
                chunks.append(' '.join(current_chunk))
                current_chunk = []
                count = 0
                
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        return chunks
    
    def query_document(self, question):
        """Find relevant document section for a question"""
        if not self.active_doc:
            return "No active document. Please upload a PDF first."
            
        question_embed = self.model.encode(question)
        similarities = cosine_similarity([question_embed], self.embeddings)[0]
        best_match = np.argmax(similarities)
        return self.text_chunks[best_match]

# ----------------------------
# Gradio Interface
# ----------------------------

def create_interface():
    analyzer = PDFAnalyzer()
    chat_history = []
    
    def process_file(file):
        success, message = analyzer.process_pdf(file.name)
        status = f"βœ… {message}" if success else f"❌ {message}"
        return status
    
    def respond(message, history):
        nonlocal analyzer
        
        # Handle document queries
        if analyzer.active_doc:
            response = analyzer.query_document(message)
            history.append((message, response))
            return history, history
        
        # Handle initial state
        history.append((message, "Please upload a PDF document first"))
        return history, history
    
    def clear_chat():
        nonlocal analyzer
        analyzer = PDFAnalyzer()
        return [], [], "❌ No document loaded"

    with gr.Blocks(title="PDF Analysis Assistant", theme=gr.themes.Soft()) as app:
        gr.Markdown("# πŸ“„ PDF Analysis Assistant")
        gr.Markdown("Upload a PDF document and ask questions about its content")
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(label="Upload PDF", type="filepath")
                status_output = gr.Markdown("❌ No document loaded")
                upload_btn = gr.Button("Process Document")
            
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(label="Conversation")
                msg = gr.Textbox(label="Your Question")
                clear_btn = gr.Button("Clear Chat")
        
        # Event handling
        upload_btn.click(
            process_file,
            inputs=file_input,
            outputs=status_output
        )
        
        msg.submit(
            respond,
            inputs=[msg, chatbot],
            outputs=[chatbot, chatbot]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, file_input, status_output]
        )

    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch()