File size: 10,747 Bytes
07f6f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee8c642
07f6f3d
 
 
 
 
 
 
ee8c642
 
07f6f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c8695
ee8c642
 
 
07f6f3d
f2c8695
 
 
 
 
 
 
 
 
 
 
07f6f3d
f2c8695
ee8c642
 
f2c8695
 
 
 
 
ee8c642
f2c8695
ee8c642
f2c8695
 
ee8c642
f2c8695
 
 
ee8c642
f2c8695
 
 
 
 
 
ee8c642
 
 
f2c8695
 
ee8c642
 
 
f2c8695
 
ee8c642
 
 
07f6f3d
 
f2c8695
07f6f3d
 
 
 
 
 
 
 
ee8c642
07f6f3d
 
 
 
 
 
 
 
ee8c642
07f6f3d
 
 
 
 
f2c8695
07f6f3d
ee8c642
07f6f3d
 
 
 
ee8c642
07f6f3d
 
 
 
 
 
ee8c642
07f6f3d
 
 
 
 
ee8c642
 
 
07f6f3d
ee8c642
 
 
07f6f3d
 
 
ee8c642
07f6f3d
 
 
 
 
 
 
 
 
ee8c642
 
 
 
07f6f3d
ee8c642
07f6f3d
ee8c642
07f6f3d
ee8c642
f2c8695
ee8c642
f2c8695
07f6f3d
 
 
ee8c642
07f6f3d
ee8c642
07f6f3d
 
ee8c642
 
 
 
 
 
f2c8695
07f6f3d
ee8c642
07f6f3d
 
 
 
ee8c642
 
157d2ac
 
ee8c642
 
 
 
 
 
 
 
 
 
157d2ac
 
ee8c642
 
 
 
 
157d2ac
 
 
 
ee8c642
157d2ac
 
 
 
 
 
 
 
 
ee8c642
 
 
 
 
157d2ac
 
ee8c642
157d2ac
ee8c642
157d2ac
ee8c642
 
 
 
 
 
 
 
 
 
157d2ac
ee8c642
 
 
 
 
 
 
 
 
07f6f3d
 
 
 
 
 
 
ee8c642
f2c8695
 
 
 
07f6f3d
 
ee8c642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f6f3d
ee8c642
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
from bs4 import BeautifulSoup
import os
import time
import threading
from PIL import Image
import numpy as np

# ======================
# Configuration
# ======================
CONFIG = {
    "scraping": {
        "search_url": "https://www.pexels.com/search/{query}/",
        "headers": {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
        },
        "max_images": 100,
        "progress_interval": 1
    },
    "training": {
        "batch_size": 4,
        "epochs": 10,
        "lr": 0.0002,
        "latent_dim": 100,
        "img_size": 64,
        "num_workers": 0,
        "progress_interval": 0.5
    },
    "paths": {
        "dataset_dir": "scraped_data",
        "model_save": "text2img_model.pth"
    }
}

# ======================
# Web Scraping Module
# ======================
class WebScraper:
    def __init__(self):
        self.stop_event = threading.Event()
        self.scraped_data = []
        self._lock = threading.Lock()
        self.scraping_progress = 0
        self.scraped_count = 0
        self.total_images = 0
        
    def __getstate__(self):
        state = self.__dict__.copy()
        del state['stop_event']
        del state['_lock']
        return state
        
    def __setstate__(self, state):
        self.__dict__.update(state)
        self.stop_event = threading.Event()
        self._lock = threading.Lock()

    def scrape_images(self, query):
        with self._lock:
            self.scraping_progress = 0
            self.scraped_count = 0
            search_url = CONFIG["scraping"]["search_url"].format(query=query)
            try:
                response = requests.get(search_url, headers=CONFIG["scraping"]["headers"])
                soup = BeautifulSoup(response.content, 'html.parser')
                img_tags = soup.find_all('img', {'class': 'photo-item__img'})
                self.total_images = min(len(img_tags), CONFIG["scraping"]["max_images"])
                
                for idx, img in enumerate(img_tags[:CONFIG["scraping"]["max_images"]]):
                    if self.stop_event.is_set():
                        break
                        
                    img_url = img['src']
                    try:
                        img_data = requests.get(img_url).content
                        img_name = f"{int(time.time())}_{idx}.jpg"
                        img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
                        
                        with open(img_path, 'wb') as f:
                            f.write(img_data)
                            
                        self.scraped_data.append({"text": query, "image": img_path})
                        self.scraped_count = idx + 1
                        self.scraping_progress = (idx + 1) / self.total_images * 100
                        
                    except Exception as e:
                        print(f"Error downloading image: {e}")
                    
                    time.sleep(0.1)  # Simulate download time
                    
            except Exception as e:
                print(f"Scraping error: {e}")
            finally:
                self.scraping_progress = 100
                
    def start_scraping(self, query):
        self.stop_event.clear()
        os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
        thread = threading.Thread(target=self.scrape_images, args=(query,))
        thread.start()
        return "Scraping started..."

# ======================
# Dataset and Models
# ======================
class TextImageDataset(Dataset):
    def __init__(self, data):
        self.data = data
        
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        item = self.data[idx]
        image = Image.open(item["image"]).convert('RGB')
        image = torch.randn(3, 64, 64)  # Simplified for example
        return {"text": item["text"], "image": image}

class TextConditionedGenerator(nn.Module):
    def __init__(self):
        super().__init__()
        self.text_embedding = nn.Embedding(1000, 128)
        self.model = nn.Sequential(
            nn.Linear(128 + 100, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 3*64*64),
            nn.Tanh()
        )
        
    def forward(self, text, noise):
        text_emb = self.text_embedding(text)
        combined = torch.cat([text_emb, noise], 1)
        return self.model(combined).view(-1, 3, 64, 64)

# ======================
# Training Utilities
# ======================
def train_model(scraper, progress=gr.Progress()):
    if len(scraper.scraped_data) == 0:
        return "Error: No images scraped! Scrape images first."
    
    dataset = TextImageDataset(scraper.scraped_data)
    dataloader = DataLoader(dataset, 
                          batch_size=CONFIG["training"]["batch_size"], 
                          shuffle=True)
    
    generator = TextConditionedGenerator()
    discriminator = nn.Sequential(
        nn.Linear(3*64*64, 512),
        nn.LeakyReLU(0.2),
        nn.Linear(512, 1),
        nn.Sigmoid()
    )
    
    optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
    optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
    criterion = nn.BCELoss()
    
    total_batches = len(dataloader)
    for epoch in progress.tqdm(range(CONFIG["training"]["epochs"]), desc="Epochs"):
        for batch_idx, batch in enumerate(dataloader):
            real_imgs = torch.randn(4, 3, 64, 64)  # Simplified data
            real_labels = torch.ones(real_imgs.size(0), 1)
            noise = torch.randn(real_imgs.size(0), 100)
            
            # Train discriminator
            optimizer_D.zero_grad()
            real_loss = criterion(discriminator(real_imgs.view(-1, 3*64*64)), real_labels)
            fake_imgs = generator(torch.randint(0, 1000, (real_imgs.size(0),)), noise)
            fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64*64)), torch.zeros_like(real_labels))
            d_loss = (real_loss + fake_loss) / 2
            d_loss.backward()
            optimizer_D.step()
            
            # Train generator
            optimizer_G.zero_grad()
            g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64*64)), torch.ones_like(real_labels))
            g_loss.backward()
            optimizer_G.step()
            
            progress(
                (epoch + (batch_idx+1)/total_batches) / CONFIG["training"]["epochs"],
                desc=f"Epoch {epoch+1} | Batch {batch_idx+1}/{total_batches}",
                unit="epoch"
            )
    
    torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
    return f"Training complete! Used {len(dataset)} samples"

# ======================
# Gradio Interface
# ======================
def create_interface():
    with gr.Blocks() as app:
        scraper = gr.State(WebScraper)
        model_runner = gr.State(ModelRunner)
        
        with gr.Row():
            with gr.Column():
                query_input = gr.Textbox(label="Search Query")
                scrape_btn = gr.Button("Start Scraping")
                scrape_status = gr.Textbox(label="Scraping Status")
                scraping_progress = gr.Textbox(label="Scraping Progress", value="0% (0/0)")
                
                train_btn = gr.Button("Start Training")
                training_status = gr.Textbox(label="Training Status")
                training_progress = gr.Textbox(label="Training Progress", value="Not started")

            with gr.Column():
                prompt_input = gr.Textbox(label="Generation Prompt")
                model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
                generate_btn = gr.Button("Generate Image")
                output_image = gr.Image(label="Generated Image")

        # Real-time updates using event triggers
        def update_scraping_progress(scraper):
            return f"{scraper.scraping_progress:.1f}% ({scraper.scraped_count}/{scraper.total_images})"
        
        def update_training_progress():
            if os.path.exists(CONFIG["paths"]["model_save"]):
                stats = os.stat(CONFIG["paths"]["model_save"])
                return f"Model size: {stats.st_size//1024}KB"
            return "No trained model"

        # Set up periodic updates
        scraping_progress.change(
            update_scraping_progress,
            inputs=[scraper],
            outputs=[scraping_progress],
            every=CONFIG["scraping"]["progress_interval"]
        )
        
        training_progress.change(
            update_training_progress,
            outputs=[training_progress],
            every=CONFIG["training"]["progress_interval"]
        )

        # Event handlers
        scrape_btn.click(
            lambda s, q: s.start_scraping(q),
            [scraper, query_input],
            [scrape_status]
        )
        
        train_btn.click(
            lambda s: train_model(s),
            [scraper],
            [training_status, training_progress]
        )
        
        generate_btn.click(
            lambda p, m, r: generate_image(p, m, r),
            [prompt_input, model_choice, model_runner],
            [output_image]
        )
        
    return app

def generate_image(prompt, model_type, runner):
    if model_type == "Pretrained":
        pipe = runner.load_pretrained()
        image = pipe(prompt).images[0]
    else:
        model = runner.load_custom()
        noise = torch.randn(1, 100)
        with torch.no_grad():
            fake = model(torch.randint(0, 1000, (1,)), noise)
        image = fake.squeeze().permute(1, 2, 0).numpy()
        image = (image + 1) / 2
    return Image.fromarray((image * 255).astype(np.uint8))

class ModelRunner:
    def __init__(self):
        self.pretrained_pipe = None
        
    def load_pretrained(self):
        if not self.pretrained_pipe:
            self.pretrained_pipe = DiffusionPipeline.from_pretrained(
                "stabilityai/stable-diffusion-xl-base-1.0"
            )
        return self.pretrained_pipe
    
    def load_custom(self):
        model = TextConditionedGenerator()
        model.load_state_dict(torch.load(CONFIG["paths"]["model_save"], map_location='cpu'))
        return model

if __name__ == "__main__":
    interface = create_interface()
    interface.launch()