File size: 8,699 Bytes
07f6f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
from bs4 import BeautifulSoup
import os
import time
import threading
from PIL import Image
import io
import numpy as np

# ======================
# Configuration
# ======================
CONFIG = {
    "scraping": {
        "search_url": "https://www.pexels.com/search/{query}/",
        "headers": {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
        },
        "max_images": 100,
        "scrape_time": 10  # 3 hours in seconds (simulated for testing)
    },
    "training": {
        "batch_size": 4,
        "epochs": 10,
        "lr": 0.0002,
        "latent_dim": 100,
        "img_size": 64,
        "num_workers": 0
    },
    "paths": {
        "dataset_dir": "scraped_data",
        "model_save": "text2img_model.pth"
    }
}

# ======================
# Web Scraping Module
# ======================
class WebScraper:
    def __init__(self):
        self.stop_event = threading.Event()
        self.scraped_data = []
        
    def scrape_images(self, query):
        search_url = CONFIG["scraping"]["search_url"].format(query=query)
        try:
            response = requests.get(search_url, headers=CONFIG["scraping"]["headers"])
            soup = BeautifulSoup(response.content, 'html.parser')
            
            # Extract image URLs (example selector - needs adjustment for actual site)
            img_tags = soup.find_all('img', {'class': 'photo-item__img'})
            for img in img_tags[:CONFIG["scraping"]["max_images"]]:
                if self.stop_event.is_set():
                    break
                img_url = img['src']
                try:
                    img_data = requests.get(img_url).content
                    img_name = f"{int(time.time())}.jpg"
                    img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
                    
                    with open(img_path, 'wb') as f:
                        f.write(img_data)
                    
                    # Store text-image pair (text = query)
                    self.scraped_data.append({"text": query, "image": img_path})
                except Exception as e:
                    print(f"Error downloading image: {e}")
        except Exception as e:
            print(f"Scraping error: {e}")
            
    def start_scraping(self, query):
        self.stop_event.clear()
        if not os.path.exists(CONFIG["paths"]["dataset_dir"]):
            os.makedirs(CONFIG["paths"]["dataset_dir"])
        
        thread = threading.Thread(target=self.scrape_images, args=(query,))
        thread.start()
        return "Scraping started..."

# ======================
# Dataset and Models
# ======================
class TextImageDataset(Dataset):
    def __init__(self, data, transform=None):
        self.data = data
        self.transform = transform
        
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        item = self.data[idx]
        image = Image.open(item["image"]).convert('RGB')
        
        if self.transform:
            image = self.transform(image)
            
        return {"text": item["text"], "image": image}

# Simplified Text-to-Image Generator
class TextConditionedGenerator(nn.Module):
    def __init__(self):
        super().__init__()
        self.text_embedding = nn.Embedding(1000, 128)  # Simplified text embedding
        self.model = nn.Sequential(
            nn.Linear(128 + CONFIG["training"]["latent_dim"], 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 3 * CONFIG["training"]["img_size"] ** 2),
            nn.Tanh()
        )
        
    def forward(self, text, noise):
        text_emb = self.text_embedding(text)
        combined = torch.cat([text_emb, noise], 1)
        img = self.model(combined)
        return img.view(-1, 3, CONFIG["training"]["img_size"], CONFIG["training"]["img_size"])

# ======================
# Training Utilities
# ======================
def train_model(scraper, progress=gr.Progress()):
    dataset = TextImageDataset(scraper.scraped_data)
    dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)
    
    generator = TextConditionedGenerator()
    discriminator = nn.Sequential(
        nn.Linear(3 * CONFIG["training"]["img_size"] ** 2, 512),
        nn.LeakyReLU(0.2),
        nn.Linear(512, 1),
        nn.Sigmoid()
    )
    
    optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
    optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
    criterion = nn.BCELoss()
    
    for epoch in progress.tqdm(range(CONFIG["training"]["epochs"]), desc="Training"):
        for i, batch in enumerate(dataloader):
            # Train discriminator
            real_imgs = batch["image"]
            real_labels = torch.ones(real_imgs.size(0), 1)
            
            noise = torch.randn(real_imgs.size(0), CONFIG["training"]["latent_dim"])
            fake_imgs = generator(torch.randint(0, 1000, (real_imgs.size(0),)), noise)
            fake_labels = torch.zeros(real_imgs.size(0), 1)
            
            optimizer_D.zero_grad()
            real_loss = criterion(discriminator(real_imgs.view(-1, 3*64**2)), real_labels)
            fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64**2)), fake_labels)
            d_loss = real_loss + fake_loss
            d_loss.backward()
            optimizer_D.step()
            
            # Train generator
            optimizer_G.zero_grad()
            validity = discriminator(fake_imgs.view(-1, 3*64**2))
            g_loss = criterion(validity, torch.ones_like(validity))
            g_loss.backward()
            optimizer_G.step()
            
    torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
    return "Training completed!"

# ======================
# Inference Modules
# ======================
class ModelRunner:
    def __init__(self):
        self.pretrained_pipe = None
        self.custom_model = None
        
    def load_pretrained(self):
        if self.pretrained_pipe is None:
            self.pretrained_pipe = DiffusionPipeline.from_pretrained(
                "stabilityai/stable-diffusion-xl-base-1.0"
            )
        return self.pretrained_pipe
    
    def load_custom(self):
        if self.custom_model is None:
            model = TextConditionedGenerator()
            model.load_state_dict(torch.load(CONFIG["paths"]["model_save"]))
            self.custom_model = model
        return self.custom_model

# ======================
# Gradio Interface
# ======================
with gr.Blocks() as app:
    scraper = WebScraper()
    model_runner = ModelRunner()
    
    with gr.Row():
        with gr.Column():
            query_input = gr.Textbox(label="Search Query")
            scrape_btn = gr.Button("Start Scraping")
            scrape_status = gr.Textbox(label="Scraping Status")
            
            train_btn = gr.Button("Start Training")
            training_status = gr.Textbox(label="Training Status")
            
        with gr.Column():
            prompt_input = gr.Textbox(label="Generation Prompt")
            model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type")
            generate_btn = gr.Button("Generate Image")
            output_image = gr.Image(label="Generated Image")
    
    # Event Handlers
    scrape_btn.click(
        fn=scraper.start_scraping,
        inputs=query_input,
        outputs=scrape_status
    )
    
    train_btn.click(
        fn=train_model,
        inputs=[scraper],
        outputs=training_status
    )
    
    generate_btn.click(
        fn=lambda prompt, model_type: generate_image(prompt, model_type, model_runner),
        inputs=[prompt_input, model_choice],
        outputs=output_image
    )

def generate_image(prompt, model_type, runner):
    if model_type == "Pretrained":
        pipe = runner.load_pretrained()
        image = pipe(prompt).images[0]
    else:
        model = runner.load_custom()
        # Simplified generation process
        noise = torch.randn(1, CONFIG["training"]["latent_dim"])
        fake = model(torch.randint(0, 1000, (1,)), noise).detach()
        image = fake.squeeze().permute(1,2,0).numpy()
        image = (image + 1) / 2  # Scale to [0,1]
    
    return Image.fromarray((image * 255).astype(np.uint8))

if __name__ == "__main__":
    app.launch()