train_scrap / app.py
gaur3009's picture
Update app.py
f2c8695 verified
raw
history blame
8.64 kB
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
from bs4 import BeautifulSoup
import os
import time
import threading
from PIL import Image
import numpy as np
# ======================
# Configuration
# ======================
CONFIG = {
"scraping": {
"search_url": "https://www.pexels.com/search/{query}/",
"headers": {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
},
"max_images": 100,
"scrape_time": 10
},
"training": {
"batch_size": 4,
"epochs": 10,
"lr": 0.0002,
"latent_dim": 100,
"img_size": 64,
"num_workers": 0
},
"paths": {
"dataset_dir": "scraped_data",
"model_save": "text2img_model.pth"
}
}
# ======================
# Web Scraping Module
# ======================
class WebScraper:
def __init__(self):
self.stop_event = threading.Event()
self.scraped_data = []
self._lock = threading.Lock()
def __getstate__(self):
state = self.__dict__.copy()
del state['stop_event']
del state['_lock']
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.stop_event = threading.Event()
self._lock = threading.Lock()
def scrape_images(self, query):
with self._lock:
search_url = CONFIG["scraping"]["search_url"].format(query=query)
try:
response = requests.get(search_url, headers=CONFIG["scraping"]["headers"])
soup = BeautifulSoup(response.content, 'html.parser')
img_tags = soup.find_all('img', {'class': 'photo-item__img'})
for img in img_tags[:CONFIG["scraping"]["max_images"]]:
if self.stop_event.is_set():
break
img_url = img['src']
try:
img_data = requests.get(img_url).content
img_name = f"{int(time.time())}.jpg"
img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
with open(img_path, 'wb') as f:
f.write(img_data)
self.scraped_data.append({"text": query, "image": img_path})
except Exception as e:
print(f"Error downloading image: {e}")
except Exception as e:
print(f"Scraping error: {e}")
def start_scraping(self, query):
self.stop_event.clear()
os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
thread = threading.Thread(target=self.scrape_images, args=(query,))
thread.start()
return "Scraping started..."
# ======================
# Dataset and Models
# ======================
class TextImageDataset(Dataset):
def __init__(self, data, transform=None):
self.data = data
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
image = Image.open(item["image"]).convert('RGB')
return {"text": item["text"], "image": image}
class TextConditionedGenerator(nn.Module):
def __init__(self):
super().__init__()
self.text_embedding = nn.Embedding(1000, 128)
self.model = nn.Sequential(
nn.Linear(128 + CONFIG["training"]["latent_dim"], 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 3 * CONFIG["training"]["img_size"] ** 2),
nn.Tanh()
)
def forward(self, text, noise):
text_emb = self.text_embedding(text)
combined = torch.cat([text_emb, noise], 1)
return self.model(combined).view(-1, 3, CONFIG["training"]["img_size"], CONFIG["training"]["img_size"])
# ======================
# Training Utilities
# ======================
def train_model(scraper, progress=gr.Progress()):
dataset = TextImageDataset(scraper.scraped_data)
dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)
generator = TextConditionedGenerator()
discriminator = nn.Sequential(
nn.Linear(3 * CONFIG["training"]["img_size"] ** 2, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
nn.Sigmoid()
)
optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
criterion = nn.BCELoss()
for epoch in progress.tqdm(range(CONFIG["training"]["epochs"]), desc="Training"):
for batch in dataloader:
real_imgs = batch["image"]
real_labels = torch.ones(real_imgs.size(0), 1)
noise = torch.randn(real_imgs.size(0), CONFIG["training"]["latent_dim"])
# Discriminator training
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_imgs.view(-1, 3*64**2)), real_labels)
fake_imgs = generator(torch.randint(0, 1000, (real_imgs.size(0),)), noise)
fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64**2)), torch.zeros_like(real_labels))
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Generator training
optimizer_G.zero_grad()
g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64**2)), torch.ones_like(real_labels))
g_loss.backward()
optimizer_G.step()
torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
return "Training completed!"
# ======================
# Inference Modules
# ======================
class ModelRunner:
def __init__(self):
self.pretrained_pipe = None
self.custom_model = None
def load_pretrained(self):
if not self.pretrained_pipe:
self.pretrained_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
return self.pretrained_pipe
def load_custom(self):
if not self.custom_model:
model = TextConditionedGenerator()
model.load_state_dict(torch.load(CONFIG["paths"]["model_save"], map_location='cpu'))
self.custom_model = model
return self.custom_model
# ======================
# Gradio Interface
# ======================
with gr.Blocks() as app:
scraper_state = gr.State(WebScraper)
model_runner_state = gr.State(ModelRunner)
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Search Query")
scrape_btn = gr.Button("Start Scraping")
scrape_status = gr.Textbox(label="Scraping Status")
train_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status")
with gr.Column():
prompt_input = gr.Textbox(label="Generation Prompt")
model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
scrape_btn.click(
lambda scraper, query: scraper.start_scraping(query),
[scraper_state, query_input],
scrape_status
)
train_btn.click(
lambda scraper: train_model(scraper),
[scraper_state],
training_status
)
generate_btn.click(
lambda prompt, model_type, runner: generate_image(prompt, model_type, runner),
[prompt_input, model_choice, model_runner_state],
output_image
)
def generate_image(prompt, model_type, runner):
if model_type == "Pretrained":
pipe = runner.load_pretrained()
image = pipe(prompt).images[0]
else:
model = runner.load_custom()
noise = torch.randn(1, CONFIG["training"]["latent_dim"])
with torch.no_grad():
fake = model(torch.randint(0, 1000, (1,)), noise)
image = fake.squeeze().permute(1, 2, 0).numpy()
image = (image + 1) / 2
return Image.fromarray((image * 255).astype(np.uint8))
if __name__ == "__main__":
app.launch()