train_scrap / app.py
gaur3009's picture
Update app.py
86a8577 verified
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
import os
import time
import threading
from PIL import Image
import numpy as np
# ======================
# Configuration
# ======================
CONFIG = {
"pexels_api_key": "HSknLvmKmOXuqXsE89NXzu6ysOqPr7FmHGObjaSdhTTmpFSuK5K7OaHn",
"scraping": {
"search_url": "https://api.pexels.com/v1/search?query={query}&per_page=80",
"max_images": 100,
"progress_interval": 1
},
"training": {
"batch_size": 4,
"epochs": 10,
"lr": 0.0002,
"latent_dim": 100,
"img_size": 64,
"num_workers": 0,
"progress_interval": 0.5
},
"paths": {
"dataset_dir": "scraped_data",
"model_save": "text2img_model.pth"
}
}
# ======================
# Web Scraping Module (Now using Pexels API)
# ======================
class WebScraper:
def __init__(self):
self.stop_event = threading.Event()
self.scraped_data = []
self._lock = threading.Lock()
self.scraping_progress = 0
self.scraped_count = 0
self.total_images = 0
def __getstate__(self):
state = self.__dict__.copy()
del state['stop_event']
del state['_lock']
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.stop_event = threading.Event()
self._lock = threading.Lock()
def scrape_images(self, query):
with self._lock:
self.scraping_progress = 0
self.scraped_count = 0
url = CONFIG["scraping"]["search_url"].format(query=query)
headers = {
"Authorization": CONFIG["pexels_api_key"]
}
try:
response = requests.get(url, headers=headers)
data = response.json()
photos = data.get("photos", [])
self.total_images = min(len(photos), CONFIG["scraping"]["max_images"])
for idx, photo in enumerate(photos[:self.total_images]):
if self.stop_event.is_set():
break
img_url = photo["src"]["large"]
try:
img_data = requests.get(img_url).content
img_name = f"{int(time.time())}_{idx}.jpg"
os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
with open(img_path, 'wb') as f:
f.write(img_data)
self.scraped_data.append({"text": query, "image": img_path})
self.scraped_count = idx + 1
self.scraping_progress = (idx + 1) / self.total_images * 100
except Exception as e:
print(f"Error downloading image: {e}")
time.sleep(0.1)
except Exception as e:
print(f"API scraping error: {e}")
finally:
self.scraping_progress = 100
def start_scraping(self, query):
self.scraped_data.clear()
self.stop_event.clear()
thread = threading.Thread(target=self.scrape_images, args=(query,))
thread.start()
return "Scraping started..."
# ======================
# Dataset and Models (Unchanged)
# ======================
class TextImageDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
try:
image = Image.open(item["image"]).convert('RGB')
image = image.resize((64, 64))
image = np.array(image).transpose(2, 0, 1) / 127.5 - 1
image = torch.tensor(image, dtype=torch.float32)
except Exception as e:
print(f"Error loading image: {e}")
image = torch.randn(3, 64, 64)
return {"text": item["text"], "image": image}
class TextConditionedGenerator(nn.Module):
def __init__(self):
super().__init__()
self.text_embedding = nn.Embedding(1000, 128)
self.model = nn.Sequential(
nn.Linear(128 + 100, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 3*64*64),
nn.Tanh()
)
def forward(self, text, noise):
text_emb = self.text_embedding(text)
combined = torch.cat([text_emb, noise], 1)
return self.model(combined).view(-1, 3, 64, 64)
# ======================
# Training Utilities (Unchanged)
# ======================
def train_model(scraper, progress=gr.Progress()):
if len(scraper.scraped_data) == 0:
return "Error: No images scraped! Scrape images first."
dataset = TextImageDataset(scraper.scraped_data)
dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)
generator = TextConditionedGenerator()
discriminator = nn.Sequential(
nn.Linear(3*64*64, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
nn.Sigmoid()
)
optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
criterion = nn.BCELoss()
for epoch in progress.tqdm(range(CONFIG["training"]["epochs"])):
for batch in dataloader:
real_imgs = batch["image"]
text_tokens = torch.randint(0, 1000, (real_imgs.size(0),))
noise = torch.randn(real_imgs.size(0), 100)
real_labels = torch.ones(real_imgs.size(0), 1)
fake_labels = torch.zeros(real_imgs.size(0), 1)
# Discriminator update
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_imgs.view(-1, 3*64*64)), real_labels)
fake_imgs = generator(text_tokens, noise)
fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64*64)), fake_labels)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Generator update
optimizer_G.zero_grad()
g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64*64)), real_labels)
g_loss.backward()
optimizer_G.step()
torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
return f"Training complete! Used {len(dataset)} samples"
# ======================
# Image Generation (Unchanged)
# ======================
class ModelRunner:
def __init__(self):
self.pretrained_pipe = None
self.custom_model = None
def load_pretrained(self):
if not self.pretrained_pipe:
self.pretrained_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
return self.pretrained_pipe
def load_custom(self):
if not self.custom_model:
model = TextConditionedGenerator()
model.load_state_dict(torch.load(CONFIG["paths"]["model_save"]))
model.eval()
self.custom_model = model
return self.custom_model
def generate_image(prompt, model_type, runner):
if model_type == "Pretrained":
pipe = runner.load_pretrained()
image = pipe(prompt).images[0]
return image
else:
model = runner.load_custom()
noise = torch.randn(1, 100)
with torch.no_grad():
fake = model(torch.randint(0, 1000, (1,)), noise)
image = fake.squeeze().permute(1, 2, 0).numpy()
image = (image + 1) / 2
return Image.fromarray((image * 255).astype(np.uint8))
# ======================
# Gradio Interface (Unchanged)
# ======================
def create_interface():
with gr.Blocks() as app:
scraper = gr.State(WebScraper())
runner = gr.State(ModelRunner())
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Search Query")
scrape_btn = gr.Button("Start Scraping")
scrape_status = gr.Textbox(label="Scraping Status")
train_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status")
with gr.Column():
prompt_input = gr.Textbox(label="Generation Prompt")
model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
scrape_btn.click(lambda s, q: s.start_scraping(q), [scraper, query_input], [scrape_status])
train_btn.click(lambda s: train_model(s), [scraper], [training_status])
generate_btn.click(lambda p, m, r: generate_image(p, m, r), [prompt_input, model_choice, runner], [output_image])
return app
# ======================
# Launch
# ======================
app = create_interface()
app.launch()