Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from peft import PeftModel
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Base model and your LoRA adapter
|
7 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
|
8 |
+
adapter_repo = "gaurav2003/room-service-chatbot"
|
9 |
+
|
10 |
+
# Load tokenizer and base model
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
base_model,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
device_map="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load your LoRA adapter
|
19 |
+
model = PeftModel.from_pretrained(model, adapter_repo)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
# Chat function
|
23 |
+
def generate_response(message, history):
|
24 |
+
input_text = message
|
25 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
28 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
return response
|
30 |
+
|
31 |
+
# Gradio Interface
|
32 |
+
chatbot = gr.ChatInterface(fn=generate_response, title="Room Service Chatbot")
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
chatbot.launch()
|