gaurav2003 commited on
Commit
ffc9684
·
verified ·
1 Parent(s): e67e687

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from peft import PeftModel
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+
6
+ # Base model and your LoRA adapter
7
+ base_model = "mistralai/Mistral-7B-Instruct-v0.1"
8
+ adapter_repo = "gaurav2003/room-service-chatbot"
9
+
10
+ # Load tokenizer and base model
11
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ base_model,
14
+ torch_dtype=torch.float16,
15
+ device_map="auto"
16
+ )
17
+
18
+ # Load your LoRA adapter
19
+ model = PeftModel.from_pretrained(model, adapter_repo)
20
+ model.eval()
21
+
22
+ # Chat function
23
+ def generate_response(message, history):
24
+ input_text = message
25
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
26
+ with torch.no_grad():
27
+ outputs = model.generate(**inputs, max_new_tokens=512)
28
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
+ return response
30
+
31
+ # Gradio Interface
32
+ chatbot = gr.ChatInterface(fn=generate_response, title="Room Service Chatbot")
33
+
34
+ if __name__ == "__main__":
35
+ chatbot.launch()