Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,54 @@ from PIL import Image, ImageFilter
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import cv2
|
6 |
-
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
7 |
|
8 |
# Load depth estimation model
|
9 |
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
mask_pil =
|
20 |
-
|
21 |
|
22 |
-
# Create a blurred
|
23 |
blurred_background = image.filter(ImageFilter.GaussianBlur(radius=15))
|
24 |
|
25 |
# Convert images to NumPy arrays
|
@@ -27,7 +58,7 @@ def apply_gaussian_blur(image, mask):
|
|
27 |
blurred_array = np.array(blurred_background)
|
28 |
|
29 |
# Create a boolean mask (foreground = True, background = False)
|
30 |
-
foreground_mask =
|
31 |
foreground_mask_3d = np.stack([foreground_mask] * 3, axis=-1)
|
32 |
|
33 |
# Blend the original image with the blurred background
|
@@ -47,25 +78,26 @@ def apply_lens_blur(image):
|
|
47 |
inputs = image_processor(images=resized_image, return_tensors="pt")
|
48 |
|
49 |
with torch.no_grad():
|
50 |
-
outputs =
|
51 |
predicted_depth = outputs.predicted_depth
|
52 |
|
53 |
-
# Interpolate
|
54 |
prediction = torch.nn.functional.interpolate(
|
55 |
predicted_depth.unsqueeze(1),
|
56 |
size=resized_image.size[::-1],
|
57 |
mode="bicubic",
|
58 |
align_corners=False,
|
59 |
-
).squeeze()
|
60 |
|
61 |
# Convert prediction to a NumPy array
|
62 |
depth_map = prediction.cpu().numpy()
|
63 |
|
64 |
-
# Normalize the depth map
|
65 |
depth_norm = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))
|
66 |
|
67 |
-
num_blur_levels = 5
|
68 |
blurred_layers = []
|
|
|
69 |
for i in range(num_blur_levels):
|
70 |
sigma = i * 0.5
|
71 |
if sigma == 0:
|
@@ -77,6 +109,7 @@ def apply_lens_blur(image):
|
|
77 |
depth_indices = ((1 - depth_norm) * (num_blur_levels - 1)).astype(np.uint8)
|
78 |
|
79 |
final_blurred_image = np.zeros_like(image_np)
|
|
|
80 |
for y in range(image_np.shape[0]):
|
81 |
for x in range(image_np.shape[1]):
|
82 |
depth_index = depth_indices[y, x]
|
@@ -87,27 +120,24 @@ def apply_lens_blur(image):
|
|
87 |
|
88 |
return final_blurred_pil_image
|
89 |
|
90 |
-
def process_image(image,
|
91 |
"""Processes the image based on the selected blur type."""
|
92 |
if blur_type == "Gaussian Blur":
|
93 |
-
return apply_gaussian_blur(image,
|
94 |
-
elif blur_type == "Lens Blur":
|
95 |
-
return apply_lens_blur(image)
|
96 |
else:
|
97 |
-
return image
|
98 |
|
99 |
interface = gr.Interface(
|
100 |
fn=process_image,
|
101 |
inputs=[
|
102 |
gr.Image(type="pil", label="Upload an Image"),
|
103 |
-
gr.
|
104 |
-
gr.
|
105 |
],
|
106 |
-
outputs=gr.Image(type="pil"),
|
107 |
title="Gaussian & Lens Blur Effects",
|
108 |
-
description="Upload an image and select either Gaussian blur (with
|
109 |
)
|
110 |
|
111 |
-
|
112 |
if __name__ == "__main__":
|
113 |
interface.launch()
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import cv2
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation, OneFormerProcessor, OneFormerForUniversalSegmentation
|
7 |
|
8 |
# Load depth estimation model
|
9 |
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
10 |
+
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
11 |
|
12 |
+
# Load OneFormer processor and model
|
13 |
+
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
14 |
+
segmentation_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
15 |
+
|
16 |
+
def apply_gaussian_blur(image, foreground_label='person'):
|
17 |
+
"""Applies Gaussian blur to the background based on a segmentation mask for the foreground."""
|
18 |
|
19 |
+
# Prepare input for semantic segmentation
|
20 |
+
inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
|
21 |
+
|
22 |
+
# Semantic segmentation
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = segmentation_model(**inputs)
|
25 |
+
|
26 |
+
# Processing semantic segmentation output
|
27 |
+
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
28 |
+
segmentation_mask = predicted_semantic_map.cpu().numpy()
|
29 |
+
|
30 |
+
# Get the mapping of class IDs to labels from the processor
|
31 |
+
id2label = segmentation_model.config.id2label
|
32 |
+
foreground_class_id = None
|
33 |
+
for id, label in id2label.items():
|
34 |
+
if label == foreground_label:
|
35 |
+
foreground_class_id = id
|
36 |
+
break
|
37 |
+
|
38 |
+
if foreground_class_id is None:
|
39 |
+
print(f"Error: Could not find the label '{foreground_label}' in the model's class mapping.")
|
40 |
+
return image # Return original image if foreground label is not found
|
41 |
+
|
42 |
+
# Create a black background mask and set the pixels corresponding to the foreground object to white
|
43 |
+
output_mask_array = np.zeros(segmentation_mask.shape, dtype=np.uint8)
|
44 |
+
output_mask_array[segmentation_mask == foreground_class_id] = 255
|
45 |
+
|
46 |
+
# Convert the output mask to a PIL Image (Grayscale)
|
47 |
+
mask_pil = Image.fromarray(output_mask_array, mode='L')
|
48 |
|
49 |
+
# Resize the mask to match the image size
|
50 |
+
mask_pil = mask_pil.resize(image.size)
|
51 |
+
output_mask_array = np.array(mask_pil)
|
52 |
|
53 |
+
# Create a blurred version of the input image
|
54 |
blurred_background = image.filter(ImageFilter.GaussianBlur(radius=15))
|
55 |
|
56 |
# Convert images to NumPy arrays
|
|
|
58 |
blurred_array = np.array(blurred_background)
|
59 |
|
60 |
# Create a boolean mask (foreground = True, background = False)
|
61 |
+
foreground_mask = output_mask_array > 0
|
62 |
foreground_mask_3d = np.stack([foreground_mask] * 3, axis=-1)
|
63 |
|
64 |
# Blend the original image with the blurred background
|
|
|
78 |
inputs = image_processor(images=resized_image, return_tensors="pt")
|
79 |
|
80 |
with torch.no_grad():
|
81 |
+
outputs = depth_model(**inputs)
|
82 |
predicted_depth = outputs.predicted_depth
|
83 |
|
84 |
+
# Interpolate to the original size
|
85 |
prediction = torch.nn.functional.interpolate(
|
86 |
predicted_depth.unsqueeze(1),
|
87 |
size=resized_image.size[::-1],
|
88 |
mode="bicubic",
|
89 |
align_corners=False,
|
90 |
+
).squeeze()
|
91 |
|
92 |
# Convert prediction to a NumPy array
|
93 |
depth_map = prediction.cpu().numpy()
|
94 |
|
95 |
+
# Normalize the depth map to the range 0-1
|
96 |
depth_norm = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))
|
97 |
|
98 |
+
num_blur_levels = 5
|
99 |
blurred_layers = []
|
100 |
+
|
101 |
for i in range(num_blur_levels):
|
102 |
sigma = i * 0.5
|
103 |
if sigma == 0:
|
|
|
109 |
depth_indices = ((1 - depth_norm) * (num_blur_levels - 1)).astype(np.uint8)
|
110 |
|
111 |
final_blurred_image = np.zeros_like(image_np)
|
112 |
+
|
113 |
for y in range(image_np.shape[0]):
|
114 |
for x in range(image_np.shape[1]):
|
115 |
depth_index = depth_indices[y, x]
|
|
|
120 |
|
121 |
return final_blurred_pil_image
|
122 |
|
123 |
+
def process_image(image, blur_type, foreground_label='person'):
|
124 |
"""Processes the image based on the selected blur type."""
|
125 |
if blur_type == "Gaussian Blur":
|
126 |
+
return apply_gaussian_blur(image, foreground_label=foreground_label)
|
|
|
|
|
127 |
else:
|
128 |
+
return apply_lens_blur(image)
|
129 |
|
130 |
interface = gr.Interface(
|
131 |
fn=process_image,
|
132 |
inputs=[
|
133 |
gr.Image(type="pil", label="Upload an Image"),
|
134 |
+
gr.Radio(["Gaussian Blur", "Lens Blur"], label="Choose Blur Effect"),
|
135 |
+
gr.Textbox(label="Foreground Label (for Gaussian Blur)", default="person")
|
136 |
],
|
137 |
+
outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
138 |
title="Gaussian & Lens Blur Effects",
|
139 |
+
description="Upload an image and select either Gaussian blur (with foreground segmentation) or depth-based lens blur."
|
140 |
)
|
141 |
|
|
|
142 |
if __name__ == "__main__":
|
143 |
interface.launch()
|