Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Optional | |
| import safetensors | |
| import safetensors.torch | |
| import torch | |
| import torch.nn.functional as F | |
| import weave | |
| from transformers import ( | |
| AutoModel, | |
| AutoTokenizer, | |
| BertPreTrainedModel, | |
| PreTrainedTokenizerFast, | |
| ) | |
| from ..utils import get_torch_backend, get_wandb_artifact | |
| from .common import SimilarityMetric, argsort_scores, mean_pooling, save_vector_index | |
| class ContrieverRetriever(weave.Model): | |
| """ | |
| `ContrieverRetriever` is a class to perform retrieval tasks using the Contriever model. | |
| It provides methods to encode text data into embeddings, index a dataset of text chunks, | |
| and retrieve the most relevant chunks for a given query based on similarity metrics. | |
| Args: | |
| model_name (str): The name of the pre-trained model to use for encoding. | |
| vector_index (Optional[torch.Tensor]): The tensor containing the vector representations | |
| of the indexed chunks. | |
| chunk_dataset (Optional[list[dict]]): The weave dataset of text chunks to be indexed. | |
| """ | |
| model_name: str | |
| _chunk_dataset: Optional[list[dict]] | |
| _tokenizer: PreTrainedTokenizerFast | |
| _model: BertPreTrainedModel | |
| _vector_index: Optional[torch.Tensor] | |
| def __init__( | |
| self, | |
| model_name: str = "facebook/contriever", | |
| vector_index: Optional[torch.Tensor] = None, | |
| chunk_dataset: Optional[list[dict]] = None, | |
| ): | |
| super().__init__(model_name=model_name) | |
| self._tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
| self._model = AutoModel.from_pretrained(self.model_name) | |
| self._vector_index = vector_index | |
| self._chunk_dataset = chunk_dataset | |
| def encode(self, corpus: list[str]) -> torch.Tensor: | |
| inputs = self._tokenizer( | |
| corpus, padding=True, truncation=True, return_tensors="pt" | |
| ) | |
| outputs = self._model(**inputs) | |
| return mean_pooling(outputs[0], inputs["attention_mask"]) | |
| def index(self, chunk_dataset_name: str, index_name: Optional[str] = None): | |
| """ | |
| Indexes a dataset of text chunks and optionally saves the vector index to a file. | |
| This method retrieves a dataset of text chunks from a Weave reference, encodes the | |
| text chunks into vector representations using the Contriever model, and stores the | |
| resulting vector index. If an index name is provided, the vector index is saved to | |
| a file in the safetensors format. Additionally, if a Weave run is active, the vector | |
| index file is logged as an artifact to Weave. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| import wandb | |
| from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="contriever-index") | |
| retriever = ContrieverRetriever(model_name="facebook/contriever") | |
| retriever.index( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_name="grays-anatomy-contriever", | |
| ) | |
| ``` | |
| Args: | |
| chunk_dataset_name (str): The name of the Weave dataset containing the text chunks | |
| to be indexed. | |
| index_name (Optional[str]): The name of the index artifact to be saved. If provided, | |
| the vector index is saved to a file and logged as an artifact to Weave. | |
| """ | |
| self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows | |
| corpus = [row["text"] for row in self._chunk_dataset] | |
| with torch.no_grad(): | |
| vector_index = self.encode(corpus) | |
| self._vector_index = vector_index | |
| if index_name: | |
| save_vector_index( | |
| self._vector_index, | |
| "contriever-index", | |
| index_name, | |
| {"model_name": self.model_name}, | |
| ) | |
| def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str): | |
| """ | |
| Creates an instance of the class from a Weave artifact. | |
| This method retrieves a vector index and metadata from a Weave artifact stored in | |
| Weights & Biases (wandb). It also retrieves a dataset of text chunks from a Weave | |
| reference. The vector index is loaded from a safetensors file and moved to the | |
| appropriate device (CPU or GPU). The text chunks are converted into a list of | |
| dictionaries. The method then returns an instance of the class initialized with | |
| the retrieved model name, vector index, and chunk dataset. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| retriever = ContrieverRetriever.from_wandb_artifact( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1", | |
| ) | |
| ``` | |
| Args: | |
| chunk_dataset_name (str): The name of the Weave dataset containing the text chunks. | |
| index_artifact_address (str): The address of the Weave artifact containing the | |
| vector index. | |
| Returns: | |
| An instance of the class initialized with the retrieved model name, vector index, | |
| and chunk dataset. | |
| """ | |
| artifact_dir, metadata = get_wandb_artifact( | |
| index_artifact_address, "contriever-index", get_metadata=True | |
| ) | |
| with safetensors.torch.safe_open( | |
| os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt" | |
| ) as f: | |
| vector_index = f.get_tensor("vector_index") | |
| device = torch.device(get_torch_backend()) | |
| vector_index = vector_index.to(device) | |
| chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows] | |
| return cls( | |
| model_name=metadata["model_name"], | |
| vector_index=vector_index, | |
| chunk_dataset=chunk_dataset, | |
| ) | |
| def retrieve( | |
| self, | |
| query: str, | |
| top_k: int = 2, | |
| metric: SimilarityMetric = SimilarityMetric.COSINE, | |
| ): | |
| """ | |
| Retrieves the top-k most relevant chunks for a given query using the specified similarity metric. | |
| This method encodes the input query into an embedding and computes similarity scores between | |
| the query embedding and the precomputed vector index. The similarity metric can be either | |
| cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores | |
| are returned as a list of dictionaries, each containing a chunk and its corresponding score. | |
| Args: | |
| query (str): The input query string to search for relevant chunks. | |
| top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2. | |
| metric (SimilarityMetric, optional): The similarity metric to use for scoring. | |
| Returns: | |
| list: A list of dictionaries, each containing a retrieved chunk and its relevance score. | |
| """ | |
| query = [query] | |
| device = torch.device(get_torch_backend()) | |
| with torch.no_grad(): | |
| query_embedding = self.encode(query).to(device) | |
| if metric == SimilarityMetric.EUCLIDEAN: | |
| scores = torch.squeeze(query_embedding @ self._vector_index.T) | |
| else: | |
| scores = F.cosine_similarity(query_embedding, self._vector_index) | |
| scores = scores.cpu().numpy().tolist() | |
| scores = argsort_scores(scores, descending=True)[:top_k] | |
| retrieved_chunks = [] | |
| for score in scores: | |
| retrieved_chunks.append( | |
| { | |
| "chunk": self._chunk_dataset[score["original_index"]], | |
| "score": score["item"], | |
| } | |
| ) | |
| return retrieved_chunks | |
| def predict( | |
| self, | |
| query: str, | |
| top_k: int = 2, | |
| metric: SimilarityMetric = SimilarityMetric.COSINE, | |
| ): | |
| """ | |
| Predicts the top-k most relevant chunks for a given query using the specified similarity metric. | |
| This function is a wrapper around the `retrieve` method. It takes an input query string, | |
| retrieves the top-k most relevant chunks from the precomputed vector index based on the | |
| specified similarity metric, and returns the results as a list of dictionaries, each containing | |
| a chunk and its corresponding relevance score. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| retriever = ContrieverRetriever.from_wandb_artifact( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1", | |
| ) | |
| scores = retriever.predict(query="What are Ribosomes?", metric=SimilarityMetric.COSINE) | |
| ``` | |
| Args: | |
| query (str): The input query string to search for relevant chunks. | |
| top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2. | |
| metric (SimilarityMetric, optional): The similarity metric to use for scoring. Defaults to cosine similarity. | |
| Returns: | |
| list: A list of dictionaries, each containing a retrieved chunk and its relevance score. | |
| """ | |
| return self.retrieve(query, top_k, metric) | |