geetu040's picture
Added Face Analytics
e577af3
raw
history blame
1.8 kB
import string
import re
import joblib
from pydantic import BaseModel
# SCHEMA
class Schema(BaseModel):
text: str
# Request Handler
def movie_reviews(req):
text = req.text
output = predict(text)
return output
# PREPROCESSING
punc = string.punctuation
abbv = {
"AFAIK":"as far as I know",
"IMO": "in my opinion",
"IMHO": "in my humble opinion",
"LGTM": "look good to me",
"AKA": "also know as",
"ASAP": "as sone as possible",
"BTW": "by the way",
"FAQ": "frequently asked questions",
"DIY": "do it yourself",
"DM": "direct message",
"FYI": "for your information",
"IC": "i see",
"IOW": "in other words",
"IIRC": "If I Remember Correctly",
"icymi":"In case you missed it",
"CUZ": "because",
"COS": "because",
"nv": "nevermind",
"PLZ": "please",
}
html_pattern = re.compile('<.*?>')
urls_pattern = re.compile(r'https?://\S+|www\.\S+')
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
"]+", flags=re.UNICODE)
# PIPELINE
pipeline = joblib.load("./src/movie_reviews/pipeline.pkl")
def predict(text):
cleaned = preprocess(text)
pred = pipeline.predict([cleaned])[0]
output = [0, 0]
output[pred] = 0.8
output[1-pred] = 0.2
return [output]
def preprocess(text):
text = text.lower() # Lowercase
text = html_pattern.sub(r'', text) # HTML Tags
text = urls_pattern.sub(r'', text) # urls
text = text.translate(str.maketrans("", "", punc)) # punctuations
text = emoji_pattern.sub(r'', text) # Emojis
new_text = []
for word in text.split(" "):
word = abbv.get(word.upper(), word) # abbreviations
new_text.append(word)
text = " ".join(new_text)
return text