|
import streamlit as st |
|
import streamlit.components.v1 as components |
|
from streamlit_shortcuts import button, add_keyboard_shortcuts |
|
import base64 |
|
|
|
st.title("📘Named Entity Recognition") |
|
|
|
st.header("Tags the below 41 medical entities") |
|
|
|
'ACTIVITY' |
|
'ADMINISTRATION' |
|
'AGE' |
|
'AREA' |
|
'BIOLOGICAL_ATTRIBUTE' |
|
'BIOLOGICAL_STRUCTURE' |
|
'CLINICAL_EVENT' |
|
'COLOR' |
|
'COREFERENCE' |
|
'DATE' |
|
'DETAILED_DESCRIPTION' |
|
'DIAGNOSTIC_PROCEDURE' |
|
'DISEASE_DISORDER' |
|
'DISTANCE' |
|
'DOSAGE' |
|
'DURATION' |
|
'FAMILY_HISTORY' |
|
'FREQUENCY' |
|
'HEIGHT' |
|
'HISTORY' |
|
'LAB_VALUE' |
|
'MASS' |
|
'MEDICATION' |
|
'NONBIOLOGICAL_LOCATION' |
|
'OCCUPATION' |
|
'OTHER_ENTITY' |
|
'OUTCOME' |
|
'PERSONAL_BACKGROUND' |
|
'QUALITATIVE_CONCEPT' |
|
'QUANTITATIVE_CONCEPT' |
|
'SEVERITY' |
|
'SEX' |
|
'SHAPE' |
|
'SIGN_SYMPTOM' |
|
'SUBJECT' |
|
'TEXTURE' |
|
'THERAPEUTIC_PROCEDURE' |
|
'TIME' |
|
'VOLUME' |
|
'WEIGHT' |
|
|
|
|
|
|
|
|
|
content = [f"This is scrollable content line {i}" for i in range(100)] |
|
|
|
|
|
for i in range(len(content) - 1): |
|
st.write(content[i]) |
|
|
|
|
|
last_item = st.empty() |
|
|
|
|
|
st.success("Bottom of page reached!") |
|
|
|
|
|
|
|
last_item.write(content[-1]) |
|
|