File size: 9,688 Bytes
1b200e2
a57843e
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd1caa
 
a57843e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e76ad
a57843e
 
1b200e2
 
 
a57843e
af9afd0
a57843e
 
af9afd0
 
 
a57843e
 
 
af9afd0
a57843e
af9afd0
a57843e
 
 
 
 
6f77d89
a57843e
 
6f77d89
a57843e
af9afd0
 
 
a57843e
 
af9afd0
 
 
 
 
 
 
 
 
a57843e
 
 
6f77d89
ca3cd50
f0be20f
 
6f77d89
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955babe
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4439507
 
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2ed78
1b200e2
 
7b2ed78
 
1b200e2
 
 
 
 
7b2ed78
1b200e2
 
 
 
 
 
 
 
 
 
f0be20f
ff94570
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st

# --- SHARED ON ALL PAGES ---
#st.logo(image=":material/medical_information:")
st.logo("images/medical_information_24dp_1F1F1F_FILL0_wght400_GRAD0_opsz24.png")
st.sidebar.text("Project by JA-RAD")


# --- PAGE SETUP ---
home_page = st.Page(
    page="pages/home.py",
    title="Home",
    icon=":material/home:",
    default=True,)

type_text_page = st.Page(
    page="pages/type_text.py",
    title="type text",
    icon=":material/keyboard:",
    default=False,)

upload_file_page = st.Page(
    page="pages/upload_file.py",
    title="upload file (page not yet active)",
    icon=":material/file_upload:",
    default=False,)

about_page = st.Page(
    page="pages/about.py",
    title="About the app",
    icon=":material/info:",
    default=False)


# --- NAVIGATION SETUP ---
#pg = st.navigation(pages=[home_page, type_text_page, upload_file_page, about_page]) # WITHOUT SECTIONS
pg = st.navigation({"Home": [home_page], "Demo": [type_text_page, upload_file_page], "About": [about_page]}) # WITH SECTIONS

pg.run()

#import pandas as pd
#from io import StringIO
#import json
#import torch
#from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #AutoModelForTokenClassification
#from sentence_transformers import SentenceTransformer, util 
#import lmdeploy
#import turbomind as tm 

#from backend.utils import get_current_ram_usage, ga
#import backend.aragpt
#import backend.home
#import backend.processor
#import backend.sa
#import backend.qa

#st.set_page_config(
#    page_title="TEST", page_icon="πŸ“–", initial_sidebar_state="expanded", layout="wide"
#)

#ga(st.__file__)

#PAGES = {
#    "Home": backend.home,
#    "Demo": Demo,
#    "About": backend.home
#}

#st.sidebar.title("SBSmapper")
#selection = st.sidebar.radio("Pages", list(PAGES.keys()))

#page = PAGES[selection]
# with st.spinner(f"Loading {selection} ..."):
#ast.shared.components.write_page(page)

#st.sidebar.header("Info")
#st.sidebar.write("Project by JA RAD")
#st.sidebar.write(
#    "Pre-trained models are available on [HF Hub](https://huggingface.co/)"
#)
#st.sidebar.write(
#    "Models source code available on [GitHub](https://github.com/)"
#)
#st.sidebar.write(
#    "App source code available on [GitHub](https://github.com/)"
#)
#if st.sidebar.checkbox("Show RAM usage"):
#    ram = get_current_ram_usage()
#    st.sidebar.write("Ram usage: {:.2f}/{:.2f} GB".format(ram[0], ram[1]))

"""
import os
os.getenv("HF_TOKEN")

def on_click():
    st.session_state.user_input = ""

#@st.cache
def convert_df(df:pd.DataFrame):
     return df.to_csv(index=False).encode('utf-8')

#@st.cache
def convert_json(df:pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    #st.json(json_string, expanded=True)
    return json_string

#st.title("πŸ“˜SBS mapper")

INTdesc_input = st.text_input("Type internal description and hit Enter", key="user_input") 

createSBScodes, right_column = st.columns(2)
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
right_column.button("Reset", on_click=on_click)

numMAPPINGS_input = 5
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
#st.button("Clear text", on_click=on_click)


model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
#model = SentenceTransformers('all-distilroberta-v1')
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5') 
#model = SentenceTransformer('clips/mfaq')

INTdesc_embedding = model.encode(INTdesc_input)

# Semantic search, Compute cosine similarity between all pairs of SBS descriptions

#df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
#df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"]) 
from_line = 7727 # Imaging services chapter start, adjust as needed
to_line = 8239 # Imaging services chapter end, adjust as needed
nrows = to_line - from_line + 1
skiprows = list(range(1,from_line - 1))
df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
#st.write(df_SBS.head(5))

SBScorpus = df_SBS['Long_Description'].values.tolist()
SBScorpus_embeddings = model.encode(SBScorpus)

#my_model_results = pipeline("ner", model= "checkpoint-92")
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]

model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline("text-generation", model=model_id, device_map="auto",) # torch_dtype=torch.bfloat16


col1, col2, col3 = st.columns([1,1,2.5])
col1.subheader("Score")
col2.subheader("SBS code")
col3.subheader("SBS description V2.0")

dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}

if INTdesc_input is not None and createSBScodes_clicked == True: 
    #for i, result in enumerate(HF_model_results_displayed):
    for result in HF_model_results_displayed:
        with st.container():
            col1.write("%.4f" % result[0]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[0]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[0]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[0]["corpus_id"]])

            col1.write("%.4f" % result[1]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[1]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[1]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[1]["corpus_id"]])
            
            col1.write("%.4f" % result[2]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[2]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[2]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[2]["corpus_id"]])
            
            col1.write("%.4f" % result[3]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[3]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[3]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[3]["corpus_id"]])
            
            col1.write("%.4f" % result[4]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[4]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[4]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[4]["corpus_id"]])

            dfA = pd.DataFrame.from_dict(dictA) 

    display_format = "ask REASONING MODEL: Which, if any, of the above Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    st.write(display_format)
    question = "Which, if any, of the below Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]] 
    prompt = [question + " " + shortlist[0] + " " + shortlist[1] + " " + shortlist[2] + " " + shortlist[3] + " " + shortlist[4]]
    #st.write(prompt)
    
    messages = [
    {"role": "system", "content": "You are a knowledgable AI assistant who always answers truthfully and precisely!"},
    {"role": "user", "content": prompt},
    ]
    outputs = pipe(
        messages,
        max_new_tokens=256,
    )
    st.write(outputs[0]["generated_text"][-1]["content"])
    
    bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
    with b1:
        #csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
        csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(dfA), file_name= "results.csv", mime='text/csv', key='csv_b')
    with b2:
        #textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
        textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(dfA), file_name= "results.text", mime='text/plain',  key='text_b')
    with b3:
        #jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
        jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(dfA), file_name= "results.json", mime='application/json',  key='json_b') 
"""