File size: 9,688 Bytes
1b200e2 a57843e 3cd1caa a57843e 14e76ad a57843e 1b200e2 a57843e af9afd0 a57843e af9afd0 a57843e af9afd0 a57843e af9afd0 a57843e 6f77d89 a57843e 6f77d89 a57843e af9afd0 a57843e af9afd0 a57843e 6f77d89 ca3cd50 f0be20f 6f77d89 1b200e2 955babe 1b200e2 4439507 1b200e2 7b2ed78 1b200e2 7b2ed78 1b200e2 7b2ed78 1b200e2 f0be20f ff94570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
# --- SHARED ON ALL PAGES ---
#st.logo(image=":material/medical_information:")
st.logo("images/medical_information_24dp_1F1F1F_FILL0_wght400_GRAD0_opsz24.png")
st.sidebar.text("Project by JA-RAD")
# --- PAGE SETUP ---
home_page = st.Page(
page="pages/home.py",
title="Home",
icon=":material/home:",
default=True,)
type_text_page = st.Page(
page="pages/type_text.py",
title="type text",
icon=":material/keyboard:",
default=False,)
upload_file_page = st.Page(
page="pages/upload_file.py",
title="upload file (page not yet active)",
icon=":material/file_upload:",
default=False,)
about_page = st.Page(
page="pages/about.py",
title="About the app",
icon=":material/info:",
default=False)
# --- NAVIGATION SETUP ---
#pg = st.navigation(pages=[home_page, type_text_page, upload_file_page, about_page]) # WITHOUT SECTIONS
pg = st.navigation({"Home": [home_page], "Demo": [type_text_page, upload_file_page], "About": [about_page]}) # WITH SECTIONS
pg.run()
#import pandas as pd
#from io import StringIO
#import json
#import torch
#from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #AutoModelForTokenClassification
#from sentence_transformers import SentenceTransformer, util
#import lmdeploy
#import turbomind as tm
#from backend.utils import get_current_ram_usage, ga
#import backend.aragpt
#import backend.home
#import backend.processor
#import backend.sa
#import backend.qa
#st.set_page_config(
# page_title="TEST", page_icon="π", initial_sidebar_state="expanded", layout="wide"
#)
#ga(st.__file__)
#PAGES = {
# "Home": backend.home,
# "Demo": Demo,
# "About": backend.home
#}
#st.sidebar.title("SBSmapper")
#selection = st.sidebar.radio("Pages", list(PAGES.keys()))
#page = PAGES[selection]
# with st.spinner(f"Loading {selection} ..."):
#ast.shared.components.write_page(page)
#st.sidebar.header("Info")
#st.sidebar.write("Project by JA RAD")
#st.sidebar.write(
# "Pre-trained models are available on [HF Hub](https://huggingface.co/)"
#)
#st.sidebar.write(
# "Models source code available on [GitHub](https://github.com/)"
#)
#st.sidebar.write(
# "App source code available on [GitHub](https://github.com/)"
#)
#if st.sidebar.checkbox("Show RAM usage"):
# ram = get_current_ram_usage()
# st.sidebar.write("Ram usage: {:.2f}/{:.2f} GB".format(ram[0], ram[1]))
"""
import os
os.getenv("HF_TOKEN")
def on_click():
st.session_state.user_input = ""
#@st.cache
def convert_df(df:pd.DataFrame):
return df.to_csv(index=False).encode('utf-8')
#@st.cache
def convert_json(df:pd.DataFrame):
result = df.to_json(orient="index")
parsed = json.loads(result)
json_string = json.dumps(parsed)
#st.json(json_string, expanded=True)
return json_string
#st.title("πSBS mapper")
INTdesc_input = st.text_input("Type internal description and hit Enter", key="user_input")
createSBScodes, right_column = st.columns(2)
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
right_column.button("Reset", on_click=on_click)
numMAPPINGS_input = 5
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
#st.button("Clear text", on_click=on_click)
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
#model = SentenceTransformers('all-distilroberta-v1')
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
#model = SentenceTransformer('clips/mfaq')
INTdesc_embedding = model.encode(INTdesc_input)
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
#df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
#df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
from_line = 7727 # Imaging services chapter start, adjust as needed
to_line = 8239 # Imaging services chapter end, adjust as needed
nrows = to_line - from_line + 1
skiprows = list(range(1,from_line - 1))
df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
#st.write(df_SBS.head(5))
SBScorpus = df_SBS['Long_Description'].values.tolist()
SBScorpus_embeddings = model.encode(SBScorpus)
#my_model_results = pipeline("ner", model= "checkpoint-92")
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline("text-generation", model=model_id, device_map="auto",) # torch_dtype=torch.bfloat16
col1, col2, col3 = st.columns([1,1,2.5])
col1.subheader("Score")
col2.subheader("SBS code")
col3.subheader("SBS description V2.0")
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
if INTdesc_input is not None and createSBScodes_clicked == True:
#for i, result in enumerate(HF_model_results_displayed):
for result in HF_model_results_displayed:
with st.container():
col1.write("%.4f" % result[0]["score"])
col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
col3.write(SBScorpus[result[0]["corpus_id"]])
dictA["Score"].append("%.4f" % result[0]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[0]["corpus_id"]])
col1.write("%.4f" % result[1]["score"])
col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
col3.write(SBScorpus[result[1]["corpus_id"]])
dictA["Score"].append("%.4f" % result[1]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[1]["corpus_id"]])
col1.write("%.4f" % result[2]["score"])
col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
col3.write(SBScorpus[result[2]["corpus_id"]])
dictA["Score"].append("%.4f" % result[2]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[2]["corpus_id"]])
col1.write("%.4f" % result[3]["score"])
col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
col3.write(SBScorpus[result[3]["corpus_id"]])
dictA["Score"].append("%.4f" % result[3]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[3]["corpus_id"]])
col1.write("%.4f" % result[4]["score"])
col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
col3.write(SBScorpus[result[4]["corpus_id"]])
dictA["Score"].append("%.4f" % result[4]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[4]["corpus_id"]])
dfA = pd.DataFrame.from_dict(dictA)
display_format = "ask REASONING MODEL: Which, if any, of the above Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? "
st.write(display_format)
question = "Which, if any, of the below Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? "
shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]]
prompt = [question + " " + shortlist[0] + " " + shortlist[1] + " " + shortlist[2] + " " + shortlist[3] + " " + shortlist[4]]
#st.write(prompt)
messages = [
{"role": "system", "content": "You are a knowledgable AI assistant who always answers truthfully and precisely!"},
{"role": "user", "content": prompt},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
st.write(outputs[0]["generated_text"][-1]["content"])
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
with b1:
#csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(dfA), file_name= "results.csv", mime='text/csv', key='csv_b')
with b2:
#textbutton = download_button(results, "results.txt", "π₯ Download .txt")
textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(dfA), file_name= "results.text", mime='text/plain', key='text_b')
with b3:
#jsonbutton = download_button(results, "results.json", "π₯ Download .json")
jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(dfA), file_name= "results.json", mime='application/json', key='json_b')
""" |