File size: 7,593 Bytes
1b200e2
 
 
 
 
 
 
 
 
 
 
30c893d
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import streamlit as st
import pandas as pd
from io import StringIO
import json
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #AutoModelForTokenClassification
from sentence_transformers import SentenceTransformer, util 
#import lmdeploy
#import turbomind as tm 

from huggingface_hub import login
login(token = sbsmapper_token)

def on_click():
    st.session_state.user_input = ""

#@st.cache
def convert_df(df:pd.DataFrame):
     return df.to_csv(index=False).encode('utf-8')

#@st.cache
def convert_json(df:pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    #st.json(json_string, expanded=True)
    return json_string

#st.title("πŸ“˜SBS mapper")

INTdesc_input = st.text_input("Type internal description and hit Enter", key="user_input") 

createSBScodes, right_column = st.columns(2)
createSBScodes_clicked = createSBScodes.button("Create SBS codes", key="user_createSBScodes")
right_column.button("Reset", on_click=on_click)

numMAPPINGS_input = 5
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
#st.button("Clear text", on_click=on_click)


model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
#model = SentenceTransformers('all-distilroberta-v1')
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5') 
#model = SentenceTransformer('clips/mfaq')

INTdesc_embedding = model.encode(INTdesc_input)

# Semantic search, Compute cosine similarity between all pairs of SBS descriptions

#df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
#df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"]) 
from_line = 7727 # Imaging services chapter start, adjust as needed
to_line = 8239 # Imaging services chapter end, adjust as needed
nrows = to_line - from_line + 1
skiprows = list(range(1,from_line - 1))
df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
#st.write(df_SBS.head(5))

SBScorpus = df_SBS['Long_Description'].values.tolist()
SBScorpus_embeddings = model.encode(SBScorpus)

#my_model_results = pipeline("ner", model= "checkpoint-92")
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]

model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)



col1, col2, col3 = st.columns([1,1,2.5])
col1.subheader("Score")
col2.subheader("SBS code")
col3.subheader("SBS description V2.0")

dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}

if INTdesc_input is not None and createSBScodes_clicked == True: 
    #for i, result in enumerate(HF_model_results_displayed):
    for result in HF_model_results_displayed:
        with st.container():
            col1.write("%.4f" % result[0]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[0]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[0]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[0]["corpus_id"]])

            col1.write("%.4f" % result[1]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[1]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[1]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[1]["corpus_id"]])
            
            col1.write("%.4f" % result[2]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[2]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[2]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[2]["corpus_id"]])
            
            col1.write("%.4f" % result[3]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[3]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[3]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[3]["corpus_id"]])
            
            col1.write("%.4f" % result[4]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[4]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[4]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[4]["corpus_id"]])

            dfA = pd.DataFrame.from_dict(dictA) 

    display_format = "ask REASONING MODEL: Which, if any, of the above Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    st.write(display_format)
    question = "Which, if any, of the below Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]] 
    prompt = [question + " " + shortlist[0] + " " + shortlist[1] + " " + shortlist[2] + " " + shortlist[3] + " " + shortlist[4]]
    st.write(prompt)
    
    messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
    ]
    outputs = pipe(
        messages,
        max_new_tokens=256,
    )
    st.write(outputs[0]["generated_text"][-1])
    
    bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
    with b1:
        #csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
        csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(dfA), file_name= "results.csv", mime='text/csv', key='csv_b')
    with b2:
        #textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
        textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(dfA), file_name= "results.text", mime='text/plain',  key='text_b')
    with b3:
        #jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
        jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(dfA), file_name= "results.json", mime='application/json',  key='json_b')